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Abstract
Lightweight dynamic language runtimes have become popular in
part because they simply integrate with a wide range of native code
libraries and embedding applications. However, further develop-
ment of these runtimes in the areas of concurrency, efficiency and
safety is impeded by the desire to maintain their native code in-
terfaces, even at a source level. Native extension modules’ lack of
thread safety is a significant barrier to dynamic languages’ effec-
tive deployment on current and future multicore and multiproces-
sor systems. We propose the use of hardware transactional mem-
ory (HTM) to aid runtimes in evolving more capable and robust
execution models while maintaining native code compatibility. To
explore these ideas, we constructed a full-system simulation in-
frastructure consisting of an HTM implementation, modified Linux
kernel and Python interpreter.

Python includes thread constructs, but its primary implementa-
tion is not architected to support their parallel execution. With small
changes, a runtime can be made HTM-aware to enable parallel ex-
ecution of Python code and extension modules. We exploit the se-
mantics of Python execution to evaluate individual bytecodes atom-
ically by default, using nested transactions to emulate programmer-
specified locking constructs where possible in existing threaded
code. We eliminate common transactional conflicts and defer I/O
within transactions to make parallel Python execution both possi-
ble and efficient. Transactions also provide safety for foreign func-
tion invocations. We characterize several small Python applications
executing on our infrastructure.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments

General Terms Design, Languages

Keywords Transactional Memory, Dynamic Languages, Python,
Concurrency, Locking, Safety

1. Introduction
Mainstream runtimes for lightweight dynamic languages including
Perl, Python, Ruby and Tcl have been successful in part because
they easily interface with native code, through extension modules
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and by embedding themselves into host applications. These run-
times’ native code interfaces, like the runtimes themselves, are sim-
ple, easy to understand, transparent and portable. By placing few
restrictions on what an extension module or embedding application
can do, they function as “glue” in integrating disparate code bases.

Unfortunately, widespread use of open-ended native code inter-
faces restricts a runtime’s ability to evolve concurrency, efficiency
and safety, which in turn can impair the language’s applicability. A
multithreaded host application embedding a thread-unsafe dynamic
language runtime may not scale well on current and future multi-
core and multiprocessor systems. Alternative implementations of
these languages, built upon heavyweight runtimes such as Java
or .NET, already scale to multiple processors, can outperform the
mainstream implementations, and support safer execution, but are
infrequently used. Disadvantages of these implementations include
increased memory overhead and startup time, restricted portability,
embeddability and extensibility.

We propose addressing several issues impeding development
of lightweight dynamic language runtimes with hardware transac-
tional memory (HTM) mechanisms. A HTM extends a machine’s
processor and memory architecture to support user-controlled spec-
ulative execution, conflict detection, and related facilities. We use
features of a proposed HTM to incrementally incorporate concur-
rent execution and improved safety in a Python runtime, without
significantly complicating the runtime’s implementation or requir-
ing extension modules and embedding applications be rewritten.

The “official” and most popular Python runtime is CPython, a
bytecode interpreter written in C; runtimes for Java and .NET also
exist. The PyPy project [20] aims to automatically generate a range
of next-generation Python runtimes, including interpreters and just-
in-time compilers, from descriptions specified in a subset of the
Python language [24]. We selected the most mature PyPy target:
pypy-c, an interpreter compiled from generated C code. Its design
is similar to CPython’s, and the techniques we present would apply
with a little more work to CPython.

The PyPy and CPython runtimes implement primarily non-
concurrent threading using OS-level threads. Both use a Global
Interpreter Lock (GIL) to prevent two threads from concurrently
interpreting Python bytecode. A thread yields control by releasing
the GIL between bytecodes, or before a blocking I/O operation [7].

We take a first step to transactional concurrency for Python
by constructing a full-system prototype for hardware transactional
execution, enabling PyPy to run existing lock-synchronized, GIL-
threaded Python code in parallel, and falling back to sequential exe-
cution where required. Specifically, this paper makes the following
contributions:

First, we propose a method for safe lock-transaction coexis-
tence, in which threads using locks and transactions for concur-
rency control can enforce the same set of atomicity constraints.



Common embedding environments, such as the Apache HTTP
Server’s mod python and graphical or other event-based applica-
tions, allow Python execution in event handlers. Embedding appli-
cations’ threading models usually differ from the Python runtime’s;
as a result, applications must carefully manage the context in which
Python code is executed and avoid deadlock when Python code
accesses data structures in the embedding application. Our model
permits nontransactional code, such as that in an unmodified em-
bedding application, to execute in the same address space, and in
parallel with transactional code.

Second, automatic transactions support transactional execution
of extension module functions that perform I/O, by stopping and
starting transactions around I/O operations within a single byte-
code execution, matching the most common GIL usage pattern in
Python extension modules. Extension modules vary widely in their
thread safety, potentially introducing bugs and incompatibilities in
languages such as Perl whose runtimes now permit concurrent exe-
cution. By using hardware transactions, extension modules written
without thread safety in mind can continue to work.

Python, like other dynamic languages, has evolved generic
foreign function interfaces (FFIs) which offer the dynamic lan-
guage programmer support for invoking arbitrary native functions
and managing native data structures, without manually wrapping
them in a native language—a tedious and repetitive process. While
generic FFIs can lower the barrier to native code integration and
give dynamic language programmers opportunities to compromise
the runtime’s stability, they also increase the ability of the runtime
to introspect native code execution. Extension modules written us-
ing generic FFIs benefit from increased transparency, exposing to
the runtime marshalling and exception handling that would other-
wise be hidden in native code.

By enclosing individual native function calls in transactions, we
can, in many cases, increase concurrency and safety. We propose
a mechanism for optimistic deferral of side effects to the end of
an enclosing transaction. A key property of transactional memory
systems is composability: transactions whose behavior is not ex-
ternally visible can be arbitrarily nested. With optimistic deferral,
we can extend this composability to extension modules that include
I/O. We also describe the use of transactions to insulate the runtime
from programming errors and crashes caused by native function
calls.

This paper is organized as follows. In Section 2, we give back-
ground on both the challenges with introducing concurrency into
dynamic languages and research on transactional memory. In Sec-
tion 3, we discuss both the benefits of using transactions for Py-
thon execution and the runtime changes required. Specifically, Sec-
tion 3.1 introduces the manner in which transactions enable con-
currency while maintaining the semantics of Python’s global inter-
preter lock-based threading model. Section 3.2 discusses changes
to the PyPy runtime which avoid false conflicts. Section 3.3 de-
scribes an execution model for running existing lock-based parallel
Python applications in any combination of transactional and non-
transactional threads, and Section 3.4 discusses the interactions of
memory allocation and garbage collection with transactions. Sec-
tions 3.5 and 3.6 describe methods for processing and deferring
non-undoable actions such as I/O within transactions. Finally, Sec-
tion 3.7 discusses a simple form of protection which can guard
against erroneous native code execution, and Section 4 presents a
characterization of Python executing transactionally.

2. Background
In this section, we introduce the range of lightweight dynamic
language concurrency models, provide a brief introduction to the
capabilities of hardware transactional memory, and describe the

layers of our transactional memory infrastructure below the PyPy
runtime.

2.1 Dynamic Languages and Concurrency

Lightweight dynamic languages such as Perl, Python and Ruby are
defined by their original, and still most commonly used, implemen-
tations. None were initially designed to support concurrent execu-
tion. While the languages’ users have come to accept relatively low
performance, they do expect the runtime’s speed to scale with the
rest of their applications. As these languages’ rising popularity ac-
companies the emergence of mainstream systems whose primary
speed gains derive from increasing the number of processor cores,
their continued viability depends on implementing practical models
of concurrency.

Concurrent multithreaded execution of arbitrary dynamic lan-
guage code requires explicit support from extensions and embed-
ding applications to avoid deadlocks, data corruption and other
forms of incorrect execution. In addition, language runtimes’ con-
currency models can interact with the concurrency models of em-
bedding applications or frameworks exposed through extension
modules in unexpected ways.

For example, Ruby, Perl and Python have by now adopted one
or more threading models, though no two languages share a com-
mon model. Ruby threads execute cooperatively in a single OS-
level thread, with nonblocking I/O managed transparently to the
user [29]. Perl’s ithreads map to OS-level threads, but depart from
the traditional threaded memory model: each thread receives a copy
of global data, and shared global data is treated as the exception
rather than the rule [5, 27]. This mechanism permits generalized
parallel execution and improves compatibility with existing code,
at the cost of copying overhead on thread creation, additional over-
head accessing data shared between threads and some extension
module incompatibility.

Python uses yet another model: its high-level threading API
mimics Java’s, and Python threads map to OS-level threads, but the
mainstream CPython runtime doesn’t support parallel execution of
these threads except in special cases (such as blocking I/O). Pre-
vailing Python concurrency models utilize preemptive and coopera-
tively scheduled threads, events and continuations, all implemented
given the limitations of a single active thread executing Python
code. Currently, true parallel Python execution requires restructur-
ing an application to execute in multiple processes, or migrating to
a Python implementation built on a heavyweight runtime—with the
associated compromises in portability and native code integration.

In part because of the limitations of Python threading, frame-
works which multiplex a single OS-level thread are commonly uti-
lized. Networked and graphical Python applications employ asyn-
chronous, event-driven frameworks such as Twisted [16], or user-
level “micro-threading” via tasklets [30] or greenlets [23].

2.2 Transactional Memory

Motivated by the shift toward the commoditization of multiproces-
sors and the problems associated with managing concurrency with
locks [28], research in alternative concurrency control techniques
has had a renaissance. Transactional memory (TM) [11, 14] is one
such approach, where programmers delimit the boundaries of crit-
ical sections and the TM system guarantees atomic execution of
these sections. In recent years, there has active research in both
software (e.g., [3, 8, 9, 12, 13]) and hardware (e.g., [4, 18, 22])
implementations of transactional memory.

All TM systems are developed around the idea of optimistic
concurrency; each transaction is executed speculatively with the
expectation that it can be executed atomically. If a conflict (a read
value has been written by another thread or a written value has been
read or written by another thread) is detected before the transaction



commits, the transaction needs to be aborted (undoing any writes
by the transaction) and it must be attempted again at some later
time. As a result, the three main requirements on a TM system are:
1) the ability to roll back transactions in case of an abort, 2) the abil-
ity to detect conflicts, and 3) the transaction commit is atomic. The
first requirement may be implemented by logging old values (and
their addresses) before they are overwritten in a transaction; if a
transaction is aborted, these old values can be restored. The second
requirement is implemented by recording the read and write sets of
transactions and either eagerly (while a transaction is executing) or
lazily (just before a transaction is committed) verifying that a trans-
action’s read and write sets have not been violated. Finally, once a
transaction has started committing its state, it must ensure that the
commit completes without its read and write sets being violated.

In this paper, we employ a hardware transactional memory de-
rived from the Virtual Transactional Memory (VTM) [22] proposal.
Hardware-based transactional memories provide two main advan-
tages relative to their software-based counterparts: 1) they can be
implemented with negligible overhead for small transactions (those
that fit in the first-level cache) and 2) they can efficiently provide
strong atomicity [6], where transactions are guaranteed to be ex-
ecuted atomically with not only other transactions, but with non-
transactional execution as well. Both of these properties are ex-
ploited in this work.

While a complete description of VTM is beyond the scope of
this paper, in a nutshell, VTM is the integration of two distinct TM
systems, both of which operate at a cache line granularity. Small-
footprint, short-lived transactions are supported completely in hard-
ware; the cache is used to hold the new (speculative) version of the
data and the main memory serves as the log. If a transaction com-
mits, the cached copy can be written back to memory; if aborted,
the cached copy can be invalidated. Conflicts are detected using a
shared-memory machine’s existing invalidation-based cache coher-
ence protocol, which guarantees that any data that is being written
cannot be present in any other processor’s cache. By maintaining
(throughout the transaction) read permission to any read data and
write permission to any written data, we can guarantee that no other
processor is writing our read set and reading our write set, respec-
tively.

For transactions that don’t fit in the cache or that need to live
past a context switch, VTM supports a second mode where logging
and conflict detection are performed using a data structure stored
in normal (non-cache) memory. This mode provides completeness,
supporting arbitrary transactions albeit with lower performance. In
many respects, this mode resembles a software transactional mem-
ory (STM)—except, provided the data structures are architected,
many of the operations on them can be performed by hardware,
much in the way that the x86’s page table is walked by a hard-
ware state machine to perform translation lookaside buffer (TLB)
fills. When using this STM-like mode, we refer to a VTM transac-
tion as having overflowed. When one transaction has overflowed,
other potentially conflicting threads must search the in-memory
data structure for conflicts. To prevent performance isolation prob-
lems (where an overflowed transaction in one process would impact
the performance of another process [32]), VTM restricts transac-
tions from spanning virtual address spaces, allowing conflict detec-
tion to be performed within a single address space.

For the experiments that we describe in this paper, we have im-
plemented a variant of VTM through extensions to the x86 ver-
sion of the Virtutech Simics full-system simulator [17] and the
Linux 2.6.15.4 kernel. Our simulated system includes four physical
processors (single-core Intel Pentium 4 processors without hyper-
threading). The implementation extends VTM’s original descrip-
tion [22] in several ways. Transactions may be paused to allow
non-transactional operations (e.g., I/O and system calls) within a

transaction; because actions performed in paused regions are not
be rolled back when a transaction aborts, a software framework
for compensation code is provided. A conflicting transaction may
be aborted and retried, or stalled until the other transaction com-
pletes [31]. A retry primitive supports intentional waiting [8], and
watcher or pseudo-transaction support can be used in concert with
transactions for memory protection. An access to a memory lo-
cation watched by a pseudo-transaction invokes a signal handler,
which receives information about the access and its context. The
set of HTM primitives implemented by our simulator, and used by
PyPy, are presented in Table 1.

3. Transactional Execution
The addition of purely software-based parallelism to CPython with
fine-grained locking or software transactional memory is frequently
discussed, but perenially rejected. Such techniques would com-
plicate the interpreter implementation and require modifying Py-
thon extension modules and embedding applications for thread
safety [1]. Hardware transactional memory is a resolution to this
impasse: it can provide acceptable parallel multithreaded perfor-
mance with small changes to the Python interpreter and no changes
to extension modules or application code. In the future, transactions
provide a more accessible concurrent programming model, and can
provide better integration and performance when used with future
transactionalized libraries and embedding applications.

We now present our modifications for transactional execution
of PyPy. First, we briefly introduce PyPy’s design as it affects our
work, and the baseline execution model of one transaction per byte-
code. To this we add support for garbage collection and operating
system calls within transactions; transactionalization of, and coex-
istence with, lock-based code; use of transactions for safety, and op-
timistic deferral of operating system calls to increase concurrency.

3.1 Multithreaded Execution in PyPy

PyPy is a “Python runtime construction kit.” It generates a family
of runtimes by applying a series of transformations to descriptions
specified in a subset of Python permitting static type inference,
called RPython or “restricted Python.” The primary target of PyPy
is the Standard Interpreter, a Python interpreter mostly compatible
with CPython 2.4. The interpreter is written primarily in RPython,
the remainder consisting of native code that must be reimplemented
for each platform. Runtimes can be generated with different target
languages (including C, LLVM [15] and .NET), garbage collec-
tion strategies, and included language features such as threads and
coroutines. The interpreter description can currently be fully trans-
formed into C source or LLVM assembly, which is compiled with

Table 1. Transactional primitives.

XACT BEGIN Begins a transaction.
XACT END Commits a transaction.
XACT PAUSE Pauses a transaction.
XACT UNPAUSE Resumes a transaction.
XACT ABORT Intentionally rolls back a transaction, option-

ally jumping to a specified location after-
ward.

XACT RETRY Suspends a transaction, restarting it when its
read set is modified.

PXACT ADD Adds a memory location to a pseudotransac-
tion.

PXACT DEL Removes a memory location from a pseudo-
transaction.
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Figure 1. PyPy and CPython’s Global Interpreter Lock (GIL)-
based threading model. The ticker variable is decremented after
each bytecode is executed.

the respective compiler and linked with hand-written C code to pro-
duce a functional interpreter.

Extension modules for PyPy are likewise implemented in a
combination of RPython and C. However, PyPy is evolving a for-
eign function interface so that extension modules can be written in
RPython alone, and compiled for either PyPy or CPython. Reduc-
ing the amount of native code in extension modules enables their
implementations to be analyzed and transformed more thoroughly,
which benefits transactional execution as we discuss in Section 3.6.

Fig. 1 depicts PyPy’s threading model, which like CPython’s
permits at most one OS-level thread to execute Python code, by
employing a lock known as the Global Interpreter Lock (GIL). A
thread holds the GIL while interpreting a user-configurable (via
sys.setcheckinterval) number of Python bytecode instruc-
tions, by default 100.1 When the thread releases the GIL, another
thread waiting on the lock can acquire it. Extension modules may
release the GIL before performing system calls which are likely to
block, thereby allowing other threads to execute Python code while
they wait. Module code reacquires the GIL when the system call
completes.

The use of the GIL ensures Python bytecodes are executed in
isolation, relieving runtime implementers and extension module de-
velopers from having to reason about interactions between concur-
rently executing bytecodes. Hardware-supported transactions pro-
vide this same isolation, but do so without sacrificing parallel exe-
cution by optimistically executing bytecodes in parallel, detecting
(and recovering) when they touch the same data.

Transactional Python execution requires—whether transactions
emulate the semantics of lock-based concurrency, events and con-

1 The GIL surrounds most, but not all, complete bytecode executions; an
obvious example is a Python function invocation, where the bytecode does
not actually complete until the function returns. Nevertheless, the GIL is
released at times when a thread switch is safe.

tinuations, or directly execute new code written with explicit trans-
action boundaries—the ability to wrap arbitrary code executing
within the Python interpreter in a transaction. To this end, we begin
by enclosing the execution of each Python bytecode in a separate
transaction.

An individual thread enables or disables per-bytecode transac-
tions with the sys.settrans function. This function releases the
GIL (which the thread was currently holding) and begins a transac-
tion. The disabling process is similar: the current transaction com-
mits and its thread reacquires the GIL. While per-bytecode transac-
tions are enabled, at the point between bytecodes at which a thread
would check its ticker counter to determine if it should release
the GIL, the transaction commits and a new transaction begins.

Per-bytecode transactions are semantically equivalent to setting
the GIL check interval to 1 (a single bytecode), assuming the GIL
is not released by an extension module. While this change theoret-
ically enables bytecode-granuarity concurrency, it is not sufficient
to achieve significant parallelism due to sources of false conflicts—
those introduced by the interpreter’s implementation, rather than
the executing Python code itself. The following section discusses
these conflicts, and the manner in which we minimize them.

3.2 Eliminating Common False Conflicts

There are three primary sources of false conflicts in the PyPy inter-
preter: 1) all threads share a single copy of exception information,
which is frequently written to and read, 2) a performance optimiza-
tion where the running thread’s stack base pointer is cached in a
single global variable, and 3) conflicts resulting from dynamic res-
olution of symbols.

Each thread stack includes a pointer to an ExecutionContext
object that encapsulates most thread-specific PyPy interpreter state,
thereby ensuring that a thread is ready to execute once it acquires
the GIL. However, PyPy does not maintain per-thread exception
information, which presents an issue when multiple active threads
execute Python code in parallel. Python exceptions are objects, and
PyPy represents the current exception state as a global structure
containing an (exc type, exc value) pair of global variables. The
PyPy interpreter code or extension modules may raise an exception
by setting these variables, and the exception type is checked fol-
lowing many interpreter function calls to determine if an exception
handler should be invoked.

Given the frequency with which the exception state is accessed,
concurrently executing Python threads experience many conflicting
accesses to this structure. This is easily remedied by changing
reads and writes of exception state to reference thread-local storage.
Newer Linux kernels provide low-overhead access to thread-local
storage by utilizing an IA-32 segment register, so the performance
impact of this change is relatively small (see Section 4).

While each thread maintains a copy of its stack base pointer
in thread-local storage, a copy of this pointer for the current run-
ning thread is cached in a global variable for performance. The fre-
quently called LL stack too big function uses this cached copy
to determine if the stack has overflowed and update the cached copy
when necessary. While we could simply remove the cached copy,
we instead chose to detect stack overflows in a manner similar to
the way in which virtual memory hardware detects accesses to in-
valid pages. We replace the function entirely by initially estimat-
ing the base pointer on each thread, and using a pseudo-transaction
to check for potential overflows. The SIG PXACT signal handler,
invoked on a potentially stack-overflowing memory access on a
thread, either updates the estimate or modifies the thread’s excep-
tion state to indicate an actual overflow. In cases where the runtime
manages allocation of its own thread stacks, we could also use the
page-level protection provided by the virtual memory hardware to
detect stack overflows; however, in embedding applications, where



the runtime’s thread stacks may be shared with its host, the addi-
tional flexibility of protection through pseudo-transactions may be
beneficial.

The last source of false conflicts we experienced was not re-
lated to PyPy itself, but to the behavior of the dynamic loader. In
some cases, on the first access to a symbol—errno was a com-
mon culprit—its location is computed and stored in a table. An-
other transaction, attempting to access the same symbol, first reads
the table to determine whether the address has been computed, and
is aborted or stalled as it attempts to read from an address that an-
other uncommitted transaction had written. We worked around this
problem by ensuring errno was accessed before transactional ex-
ecution began; a potential general solution, which we did not ex-
plore, would be to pause the current transaction while relocation
occurs, thereby ensuring the symbol’s location is immediately vis-
ible to future execution regardless of the transaction, and avoiding
incorporation of linkage tables into the transaction footprint. In a
HTM-aware OS, this modification could be performed by modify-
ing the loader or C library—below the application level, such that
a dynamic language implementer would not need to handle it.

We eliminate some false conflicts by selecting appropriate PyPy
translation options. For example, if we had configured PyPy with
a reference counting GC, as CPython uses (in PyPy, it results in
worse performance), we would experience many false conflicts
when accessing the reference counts of common constants such as
small integers and None.

3.3 Lock-Transaction Coexistence

In unmodified CPython or PyPy, the GIL ensures atomic bytecode
execution: because operations on built-in Python data structures
execute within a single bytecode, they are guaranteed to be atomic.
Python also allows user programs to use locks for mutual exclusion.
In PyPy, the RPython implementation of a lock acquire is:

1 def descr lock acquire(self, space, waitflag=True):
2 GIL = space.threadlocals.GIL
3 GIL.release()
4 result = self.lock.acquire(bool(waitflag))
5 GIL.acquire(True)
6 return space.newbool(result)

To avoid deadlock, a thread releases the GIL before trying to ac-
quire a lock. Holding the GIL would prohibit other threads from
executing, including a thread that held the requested lock, resulting
in the lock never being released. The thread reacquires the GIL af-
ter acquiring the lock. If the lock is already held and waitflag=
False, the function returns False immediately. (The underlying
lock objects, such as space.threadlocals.GIL and self.lock
above, are implemented with POSIX semaphores or their equiva-
lent.)

Our goal in converting locks to transactions, is to guarantee the
mutual exclusion denoted by the lock, while allowing concurrent
execution of independent critical sections. Thus, we would like to
avoid actually acquiring the lock whenever possible, instead rely-
ing on the transactional memory to provide isolation. Nevertheless,
our code has to correctly handle all cases, i.e., both GIL-holding
and transactional threads. The RPython portion of the implemen-
tation is shown in Fig. 2. It is somewhat reminiscent of a multiple
reader/single writer lock, in that any number of threads are allowed
to simultaneously hold the lock within a transaction, but if the lock
is actually acquired (typically by a GIL-holding thread) then no
threads are allowed to hold it within a transaction.

To “acquire” a lock when per-bytecode (PBC) transactions are
enabled, we commit the current PBC transaction and begin a trans-
action whose scope will correspond to the lock’s (lines 3–5). First
considering the case where self.needs GIL is false, the code at-

tempts to reserve the lock (line 10). Reserving a lock is a nonblock-
ing operation which reads the lock’s state, returning true if the lock
is free. The process of reserving a lock adds it to the transaction’s
read set, which will ensure that if another thread acquires the lock,
this thread’s transaction will be aborted. It also records the lock in
thread-local storage, so that an attempt to unreserve the lock later
will be considered safe. If the lock is free, we begin a PBC transac-
tion, nested inside the lock transaction (line 12). If the lock is not
free and the lock “acquisition” attempt is non-blocking (i.e., the
waitflag is false), we end the lock transaction in order to release
the read set, such that a true acquisition attempt will not cause an
abort, and begin a PBC transaction (lines 16–17).

If the lock is not free and waitflag is true, the thread uses
the transactional memory support to wait until the lock is released.
The code (line 14) executes a retry operation [8], which stalls
or deschedules the thread, but retains its transaction’s read set.
The thread is woken to rerun its transaction when any memory it
touched has changed, usually indicating the lock has been released.

“Releasing” a lock in a PBC transaction begins by unreserving
the lock (line 28), which checks that the lock being unreserved
corresponds to a lock which has been acquired within the scope
of the outermost transaction. We then perform the reverse of the
transaction behavior on a successful “acquire”, ending the PBC and
lock transactions, and beginning a new PBC transaction (lines 29–
31). The check on release is necessary to ensure that improper
lock usage does not result in behavior that would not be permitted
in the equivalent nontransactional execution. It can fail because
the lock was originally acquired in nontransactional execution,
or because the lock has already been released in transactional or
nontransactional execution. Each of these conditions triggers an
exception, aborting transactional execution.

3.4 Memory Allocation

Our HTM cannot undo all memory allocations without explicit sup-
port, because allocation can include requests to the operating sys-
tem for additional address space. A transaction’s scope does not
expand to include operating system kernel code—while a trans-
action is overflowed, its footprint is tracked via virtual addresses.
Instead, our HTM permits calls to the operating system only while
no transaction is running on the current thread, or inside a transac-
tion pause–a section of nontransactional code executed on the same
thread as the containing transaction.

In the absence of garbage collection, care is required to avoid
leaking memory when memory allocating transactions abort. Be-
cause memory allocation occurs in a transaction pause, allocated
memory is immediately removed from the pool of free memory.
As a result, an aborting transaction must explicitly undo its allo-
cations to avoid leaking memory. In our system, non-garbage col-
lected programs record each allocation as it occurs during the trans-
action and execute compensation code on a transaction abort to free
that memory. We provide this functionality through an transaction-
aware version of malloc and free, which programmers can use
without having to worry about the effects of transaction aborts. A
garbage collected environment makes this compensation code un-
necessary.

PyPy currently defaults to using the Boehm-Demers-Weiser
conservative garbage collector. Allocation is primarily thread-local,
but periodically the collector needs to “stop the world,” suspending
all threads using the collector to ensure it has a consistent view of
memory to examine. While it is possible to achieve performance
improvements in a garbage collector by exploiting transactional
isolation, we chose to ensure correct execution by modifying the
“stop the world” behavior (implemented with POSIX signals) to
abort any transactions in progress and delay transaction creation
until the collection has completed nontransactionally. Without this



1 class Lock(Wrappable):
2 def descr lock acquire(self, space, waitflag=True):
3 if rtrans.is active():
4 rtrans.end() # end PBC transaction
5 rtrans.begin() # begin lock transaction
6 if self.needs GIL:
7 result = self.lock.acquire(bool(waitflag))
8 space.getexecutioncontext().settrans(space.w False) # end lock transaction, acquire GIL
9 else:

10 result = self.lock.reserve()
11 if result:
12 rtrans.begin() # begin PBC transaction
13 elif waitflag:
14 rtrans.retry()
15 else:
16 rtrans.end() # end lock transaction
17 rtrans.begin() # begin PBC transaction
18 else:
19 GIL = space.threadlocals.GIL
20 GIL.release()
21 result = self.lock.acquire(bool(waitflag))
22 GIL.acquire(True)
23 return space.newbool(result)
24

25 def descr lock release(self, space):
26 try:
27 if rtrans.is active():
28 self.lock.unreserve()
29 rtrans.end() # end PBC transaction
30 rtrans.end() # end lock transaction
31 rtrans.begin() # begin PBC transaction
32 else:
33 self.lock.release()
34 from pypy.rpython.objectmodel import we are translated
35 if we are translated() and self.lock.lockedintrans():
36 space.getexecutioncontext().settrans(space.w True)
37 except thread.error:
38 # [raise exception, lock already unlocked]

Figure 2. RPython modifications to PyPy’s locking implementation, providing lock-transaction coexistence.

simplifying assumption, the garbage collector would need to be
made aware of transactions to ensure it finds all the live objects,
because during a transaction we might be keeping two versions of
an object alive: one to be used if the transaction commits and one in
case it aborts. In our experience, the garbage collector only “stops
the world” approximately every 100,000 per-bytecode transactions:
therefore, the performance impact of aborting a few transactions
each time is minimal.

Extension module code may invoke libraries which do not use
the PyPy garbage collector, and may attempt to perform system
calls to allocate memory inside an unpaused transaction. Memory
allocation is not the only such action extension modules can per-
form; this situation is detected and handled using a technique dis-
cussed in the following section.

3.5 Non-Undoable Actions

By wrapping native code execution in hardware-supported trans-
actions, undoable operations can be executed in parallel, where an
“undoable” operation is defined as one which can be reversed by
undoing a thread’s stores and restoring the thread’s register check-
point from the beginning of the transaction. Some operations, such
as I/O, cannot always be executed in an undoable fashion.

We distinguish three classes of non-undoable operations.

1. Operations that are safe to execute in place, but within a trans-
action pause, with or without a compensating operation to be
executed if the transaction is aborted. Several examples of these
operations have already been discussed: memory allocation in
the presence of garbage collection (requiring no compensation)
or without garbage collection (requiring a compensating free),
and symbol relocation (idempotent, requiring no compensating
action).

2. Operations which are safe to defer until the completion of the
outermost transaction. For a non-undoable operation to be safe
to defer, the remainder of the transaction must not depend
on its results. In future transactional memory-aware operating
systems and libraries, deferral would be a standard feature of
system calls.

3. Operations with dependencies later in the transaction, and
which cannot be reversed with compensation.

When only a per-bytecode transaction is in progress—that is, the
transaction nesting depth is 1—almost all non-undoable operations
fall into class 1. Operations in class 3 may only be performed
nontransactionally. As discussed in Section 3.6, it’s possible to
optimistically execute an operation as if it is in class 2, reverting
to nontransactional execution (class 3) if deferral is not possible.



Our transactional memory implementation is intentionally de-
signed to prohibit transactions from executing in the kernel. Unless
the current transaction is paused, a system call within a transaction
is considered an error, aborting the transaction. To execute oper-
ations of class 1 in a per-bytecode transaction, we could trap the
abort, acquire the GIL and reexecute nontransactionally, but a more
efficient implementation is possible: automatic transactions.

Automatic transactions are designed to mirror the conditions
under which the GIL is released around system calls. The current
transaction commits before entering the system call implementa-
tion, and a new transaction starts upon completion of the call. This
is a safe transformation because system call implementations don’t
touch internal PyPy state. For existing extension modules, it’s per-
missible to split the code before and after a system call into sepa-
rate transactions, based on the manner in which the GIL is released
around blocking I/O. If a conflict occurs in the second transaction,
after the system call, there is no need (nor any ability) to reexe-
cute the code before the system call: typically, this code unpacks
the system call result into a data structure that can be manipulated
from Python.

Binary rewriting or wrapper libraries could be used to trap sys-
tem calls in user space before they enter the kernel. For simplic-
ity’s sake, we chose to implement automatic transactional behavior
in the kernel. Enabling per-bytecode transactions in PyPy thus in-
vokes a system call which sets the TIF SYSCALL AUTO XACT flag
in the current thread’s kernel state. On a system call entry with au-
tomatic transactions enabled, instead of aborting the current trans-
action, it is committed. As the system call returns to user code, a
new transaction is begun.

Automatic transactions can only be applied in per-bytecode
transactions, therefore reserving the first lock in a thread disables
automatic transactions; unreserving the last lock in a thread reen-
ables them. When an undeferrable system call occurs in a lock-
based transaction, it aborts. The runtime uses this abort as a signal
that the region protected by the lock is not transaction-safe, and
should be reexecuted after acquiring the GIL.2

Reserving the first lock in a thread also attaches abort compen-
sation code to its transaction. The abort compensation code queries
the HTM system to identify the type of abort performed. If the abort
was performed by the system call handler, then in a transaction
pause (so that the change can live beyond the aborted transaction)
the needs GIL attribute of the RPython lock object correspond-
ing to the outermost transaction is set to True. The remainder of
the code in Fig. 2, which we have not yet discussed, uses this at-
tribute. If the lock needs the GIL, we acquire the lock and disable
per-bytecode transactions (lines 6–8). Lock acquisition within the
transaction (line 7) records the lock in a thread-local variable, so
that per-bytecode transactions can be resumed when the lock is re-
leased (lines 35–36). In our current implementation, the needs GIL
attribute persists once it is set; more context-sensitive matching
strategies may allow greater concurrency.

Non-undoable operations do not always need to be executed
in place, if their results are not needed within the scope of the
transaction. The next section discusses a method for deferring these
operations to permit additional transactional execution.

3.6 Optimistic Deferral

Through standardized methods for type conversion and function in-
vocation available in generic foreign function interfaces, it is possi-
ble to introspect the process of data exchange with native functions.
In cases where automatic transactions cannot be used, pseudo-

2 The GIL is read at the beginning of each per-bytecode transaction. Acquir-
ing the GIL thus aborts per-bytecode transactions in progress, serializing
bytecode execution until the GIL is released.

transactions watch the data returned by a system call-invoking for-
eign function, and we attempt to defer the function’s execution until
the end of a transaction, rather than falling back to nontransactional
execution.

ctypes [10] is a foreign function interface for Python, included
with the forthcoming CPython 2.5 release; rctypes, a RPython
implementation, is the primary means of development for PyPy ex-
tension modules. It allows Python code to directly call C functions
and manipulate arbitrary C data structures and types. As ctypes
can invoke a native function and return its results to Python code, it
must understand the correspondence between the arguments and re-
turn types of the function and the corresponding Python data types.
For example, a ctypes declaration and invocation of the strerror
function, with prototype char *strerror(int errnum), looks
like:

1 from ctypes import util, cdll, c int, c char p
2 libc = cdll.LoadLibrary(util.find library(’c’))
3 strerror = libc.strerror
4 strerror.argtypes = [c int]
5 strerror.restype = c char p
6 strerror(22) # returns ’Invalid argument’

Fig. 3 shows a simple example of deferral, involving a foreign
function f with a single parameter and return value. In the first
scenario, a modified ctypes module registers abort compensation
code which, if the abort happens because a system call was at-
tempted, sets the thread-local ctypes use proxy flag. On the sec-
ond attempt, ctypes does not attempt to invoke the system call, but
instead saves the converted Python argument na, registers compen-
sation code to perform the invocation, and initializes the would-
be return value with a proxy, whose target object is watched in a
pseudo-transaction.3

For the remainder of the transaction in the second and third sce-
narios, the pseudo-transaction monitors use of the proxy’s fake tar-
get. Manipulating the proxy b itself, as in the second scenario where
it is added to a list, is acceptable. Any attempt to perform opera-
tions on the contents, however, will be directed through the pointer
to the proxy’s target and triggers a pseudo-transaction conflict han-
dler which reverts to nontransactional execution, shown in the third
scenario.

One case which we cannot easily address is a foreign function
which both calls back into the Python runtime and invokes a system
call. As the purpose of foreign function interfaces is to eliminate
the necessity for language-specific wrappers, the chances of this
occurring are small, but in pathological situations we may not be
able to account for some information leakage.

Because rctypes-based extension modules are still in develop-
ment, we were unable to test the applicability of optimistic deferral.

3.7 Safety

Hardware-supported transactions are not only useful for concurrent
execution: the checkpointing facilities they provide can be used
with explicit aborts for error recovery. If native code misbehaves
when invoked from within a per-bytecode transaction we may be
able to restore the system to a consistent state by aborting the
transaction. Such a resolution could succeed when a native function
receives erroneous input from Python code, for example. In order
for this scheme to work, we must detect the error within the scope
of the transaction, and process the error, since simply reexecuting
the transaction as in a typical abort most likely will cause the error
to recur.

3 Not shown is a nested transaction, begun after the deferred call. If the
system call result triggers an exception handler outside the lock transaction,
we perform an explicit abort of the inner transaction, a commit of the lock
transaction, and resume execution in the exception handler.
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Figure 3. Optimistic deferral. 1) A system call aborts the transaction; abort compensation code marks the transaction for optimistic deferral.
2) Successful deferral; the system call is executed in the commit compensation code. 3) Unsuccessful deferral; transactional execution is not
possible.

pystone richards
iterations/s ms/iteration

pypy-c-thread (r27485) 9434 3791
+ thread-local exceptions 8881 3916
+ transactions 8403 4304

Table 2. Single-threaded performance.

We register signal handlers for a set of error-related signals
which are delivered synchronously to the current thread: SIGSEGV,
SIGILL, SIGFPE, SIGBUS, SIGSYS and SIGABRT. Unlike system
calls and interrupt handlers, signal handlers are executed in user
space, in the context of the current transaction. The signal handlers
first test transactional execution is in progress. If so, they set the
runtime’s exception state to reflect the error in a paused region, so
that it will be visible after the abort. Currently we provide only
a description of the signal in the exception, but it would also be
possible to provide any other information visible at the time of the
error. After the signal handler executes an abort, execution resumes
in the main bytecode interpretation loop, which tests the exception
state before attempting to execute anything. PyPy dispatches the
exception in the context of the bytecode to be executed.

This mechanism detects some of the most common failure con-
ditions, such as an attempt to access an unmapped address or ex-
ecute an illegal instruction. It is obviously inadequate if incorrect
execution occurred prior to the beginning of the transaction: the
error condition is then unrecoverable. In this case, the attempt to
raise a Python exception may also fail. The signal handler thus first
checks to see if an exception condition has been set on the current
thread; if it has, it executes the preexisting behavior for that sig-
nal as in nontransactional execution (usually involving abrnomal
termination of the process).

4. Evaluation
We begin our evaluation by considering the impact of our changes
to the single-threaded performance of the PyPy interpreter. HTM
primitives such as XACT BEGIN are expressed by writing a primi-

tive identifier and its parameters (if any) to registers, and executing
a particular “magic” no-op instruction which our HTM simulator
traps. Therefore, when code utilizing our HTM is run on unmod-
ified hardware, the transactional primitives do nothing. Because
single-threaded code never conflicts, we can run transactional PyPy
on a real machine to approximate the single-threaded performance
of our HTM if transactions never overflow into main memory—
which is a reasonable assumption for per-bytecode transactions, as
we discuss later in this section.

Table 2 includes results for two traditional Python benchmarks
provided with PyPy: pystone is computationally intensive proce-
dural code, and richards is object-oriented. The first row of re-
sults corresponds to “vanilla” pypy-c configured with threading
support, with no changes. The second row corresponds to a ver-
sion with thread-local exception information, which incurs a 6%
performance penalty for pystone and a 3% penalty for richards:
PyPy does not need to check the exception state after every opera-
tion, so the proportion of exception checks to code varies. The last
row represents the same code we used in the simulated HTM en-
vironment, with modifications to the Boehm GC, main interpreter
loop, GIL and other locks, for an overall 12–13% slowdown. We
performed these tests on a single-processor AMD Athlon64 3500+
machine with 1 GB RAM running Fedora Core 3 Linux (kernel
2.6.10-1.760 FC3).

As our simulation environment does not model instruction la-
tency and cache behavior, we cannot accurately measure the perfor-
mance of multithreaded transactional execution. Instead, we exam-
ine the feasibility of executing PyPy with per-bytecode transactions
and the potential for conflicts between threads. The small number
of changes we have made to an existing Python runtime results in
a conflict-free parallel execution, assuming the Python code being
excuted has no conflicts.

To test our baseline transactional PyPy implementation, we
profiled between one and four threads concurrently executing the
pystone and richards benchmarks with per-bytecode transac-
tions enabled in our HTM simulator. The version of richards pre-
sented here reduces the problem size to decrease the simulation’s
running time; this does not affect its qualitative behavior. An ad-
ditional, monitoring thread is idle, waiting for the computational
threads to complete.



pystone.1t .2t .3t .4t richards.1t .2t .3t .4t
Per-Transaction
Reads 155.4 155.5 150.2 148.1 241.8 242.2 242.3 242.3
Bytes Read 598.0 598.1 577.2 569.2 939.0 940.4 940.7 941.0
Writes 95.7 95.6 92.0 90.7 151.5 151.5 151.6 151.6
Bytes Written 381.2 380.7 366.4 361.3 602.3 602.6 602.7 602.9
Instructions 494.3 470.7 466.6 455.3 743.8 739.2 739.8 740.5
Overall
Begins 657 1302 1675 1814 56003 111975 167176 212374
Commits 657 1302 1675 1814 56003 111975 167176 212374
(Swapped) 4 5 9 15 1 19 45 96
Aborts 0 0 0 0 0 0 0 0
Swaps 117 112 126 145 1808 3431 5737 7264
In Progress 1.0 1.596 2.169 2.783 1.0 1.666 2.325 2.923

Table 3. Non-conflicting workload characterization.

Table 3 includes, for each execution, the following statistics:

• the average number of memory reads and writes performed and
bytes read and written, per transaction (or partial transaction
prior to an abort)

• the average number of instructions executed per transaction (not
including paused sections or kernel code)

• transaction begins encountered (whether for the first time, fol-
lowing a retry, or an explicit, conflict, or system call-related
abort)

• transactions successfully committed
• transaction swapped commits (an automatic in-kernel commit

upon a system call, part of automatic transaction handling)
• transactions aborted (for any reason)
• how many times a transaction was swapped (entered kernel

code on a context switch, system call or interrupt processing)
• the number of transactions in progress at the time a transaction

begin was processed—an approximation of the achieved con-
currency

Statistics collection begins when the last thread starts to execute
the benchmark code and ends when first thread stops executing per-
bytecode transactions; this is particularly noticeable in the overall
statistics for pystone. The absence of transaction aborts in these
executions demonstrates that we have identified and removed the
common causes of false conflicts. The PyPy interpreter design pre-
sented few obstacles to per-bytecode transactional parallelization.
The average memory footprint and length of per-bytecode trans-
actions are well suited for in-cache management, which indicates
they should execute efficiently, without the need for virtualization
in proposed HTM systems.

Next, we examine the conflicts caused by a microbenchmark
which repeatedly increments a global variable inside a transaction.
Table 4 compares an interpreted PyPy version with a C compiled
version. Because the body of the interpreted execution is signifi-
cantly larger, we see fewer conflicts than in the compiled code. The
number of aborts in the C version is not even larger because the
overhead of managing the in-memory data structures representing
transactions dominates the tiny transaction bodies.

5. Related Work
One previous attempt has been made to implement a lightweight
GIL-free Python runtime: Greg Stein’s “free threaded” version of
CPython 1.4, which locked individual Python data structures. This
incurred a 30–50% performance penalty on a uniprocessor versus

incr-c.4t incr-pypy.4t
Per-Transaction
Reads 1.0 159.9
Bytes Read 4.0 615.4
Writes 0.8 93.3
Bytes Written 3.1 372.1
Instructions 2.8 477.8
Overall
Begins 10001 10001
Commits 7623 9946
(Swapped) 0 3
Aborts 2376 27
Swaps 2 156
In Progress 1.29 2.955

Table 4. Increment conflict characterization.

GIL-threaded code [25]. The implementation was not further pur-
sued because of its performance penalty and limited applicability
at the time (1996)—Microsoft Merchant Server 1.0 used a free
threaded CPython, but subsequent versions were written in C++.
However, this work resulted in CPython’s current architecture for
per-thread state storage [26].

Oplinger and Lam discuss the use of speculative paralleliza-
tion to perform monitoring [19], applying automated instrumen-
tation tools to detect buffer overflows and other misexecution. Our
use of pseudo-transactions in monitoring for stack overflows, and
performing transactional aborts when signals are received, involve
much lower overheads but do not attempt such sophisticated pro-
gram analysis.

Not all dynamic languages were designed from the start without
consideration for parallel execution; for example, the latest revision
of Erlang has incorporated multiprocessor support transparently to
many applications [2].

The work we have described here sets the stage for user-
exposed transactions in PyPy: it allows existing threaded and lock-
synchronized code to execute concurrently where possible, revert-
ing to GIL-threaded behavior if necessary. While our HTM im-
plementation allows us to replace locks with carefully designed
transactions that correctly interoperate with explicit locks, detect
and handle attempted I/O, such optimistic lock-to-transaction con-
version may be directly supported in hardware. In particular, Spec-
ulative Lock Elision (SLE) [21] enables concurrent execution of



multiple threads holding the same lock as long as their behavior
does not conflict. Speculative state is buffered in hardware, similar
to the “local” or non-overflowed mode of VTM.

SLE could be directly applied to PyPy’s GIL, though the inter-
preter would still need to be modified to eliminate false conflicts
and ensure interpreter state is thread-local. As described, SLE does
not support nested locks, and does not expose transactional prim-
itives to user code, so it would not transactionalize Python-level
locks, nor offer the programming model and safety benefits of true
HTM. SLE would achieve approximately the same degree of con-
currency and conflicts as described in the previous section, with
lower overhead as lock reservation would be handled entirely in
hardware. Single-threaded performance would be closest to that in
the “thread-local exceptions” row of Table 2.

6. Conclusion
For parallel programming to become not only possible, but com-
monplace, programming languages and their implementations must
provide a simple, practical model of concurrency. Transactions are
such a model. Even when executing applications which do not ex-
plicitly employ transactional concurrency, the features provided by
a hardware transactional memory infrastructure can offer dynamic
language runtimes many benefits.

Transactional memory’s properties of atomicity, isolation and
composability, as enforced by the operating system and hardware,
are uniquely suited to the challenges of evolving lightweight dy-
namic language runtimes, while maintaining the properties of sim-
plicity and accessibility that have made these runtimes successful.
Atomicity provides a highly flexible and easy-to-understand par-
allel programming model; isolation permits existing runtimes and
their native code extensions to be easily adapted to safe parallel ex-
ecution, and composability lets us convert locks to transactions at
multiple levels, avoiding deadlock.

Our HTM implementation offers dynamic languages such as
Python not only the ability to introduce a model of concurrency
which is simple to use and implement, but the opportunity to sim-
ply improve safety and coexistence with arbitrary, preexisting na-
tive code. Our prototype demonstrates that transactional execution
of Python is possible without disturbing the semantics of explic-
itly threaded Python code or compatibility with extension modules
and embedding applications. Each mechanism we have presented
dynamically reverts to nontransactional execution when necessary,
to ensure compatibility and correctness. This showcases a signif-
icant benefit of HTM, in that transactional properties can be en-
forced across boundaries of implementation languages, runtimes
and frameworks without requiring extensive mutual awareness of
their interactions.

Acknowledgments
This research was supported in part by NSF CCR-0311340, NSF
CAREER award CCR-03047260, and a gift from the Intel corpora-
tion. We would like to thank Carl Friedrich Bolz, Michael Hudson,
Samuele Pedroni and Armin Rigo for their assistance with PyPy.
We thank Martin von Löwis and the anonymous reviewers for their
valuable comments.

References
[1] Concurrency in Python. In python-dev mailing list, Septem-

ber 2005. URL http://www.python.org/dev/summary/
2005-09-16 2005-09-30.html#concurrency-in-
python.

[2] Erlang 5.5/OTP R11B highlights. URL http://www.
erlang.org/doc/doc-5.5/doc/highlights.html.

[3] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman. Compiler and Runtime Support
for Efficient Software Transactional Memory. In Proceedings
of the SIGPLAN 2006 Conference on Programming Language
Design and Implementation, June 2006.
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