
Transactional Runtime Extensions
for Dynamic Language Performance

Nicholas Riley
njriley@uiuc.edu

Craig Zilles
zilles@uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

ABSTRACT
We propose exposing best-effort atomic execution, as pro-
vided by a simple hardware transactional memory (HTM),
in a managed runtime’s bytecode interface. Dynamic lan-
guage implementations built on such a runtime can gener-
ate more efficient, code, using speculation to eliminate the
overhead and obstructions to optimization incurred by code
needed to preserve rarely used language semantics. In this
initial work, we demonstrate the applicability of this frame-
work with two optimizations in Jython, a Python imple-
mentation for the Java virtual machine, that would yield
speedups between 13% and 38% in the presence of HTM.
Three additional optimizations, which we applied by hand to
Jython-generated code, provide an additional 60% speedup
for one benchmark.

1. INTRODUCTION
Dynamic languages such as Python and Ruby are increas-
ingly popular choices for general-purpose application devel-
opment. Programmers value the languages’ unique features,
flexibility, pragmatic design and continued evolution; they
are eager to apply them to a widening range of tasks. How-
ever, performance can be limiting: most programs writ-
ten in these languages are executed by interpreters. At-
tempts to build more faster, more sophisticated implemen-
tations (e.g., [5, 11, 15]) have been frustrated by the need to
preserve compatibility with the languages’ flexible seman-
tics.

We evaluate the effectiveness of speculatively executing Py-
thon programs, where possible, with a common case sub-
set of these semantics which correctly handles most Python
code. It it difficult to efficiently perform this speculation in
software alone, but with hardware support for transactional
execution, easier-to-optimize speculative code can execute at
full speed. When behavior unsupported by the common case
semantics is needed, our implementation initiates hardware-
assisted rollback, recovery and nontransactional reexecution
with full semantic fidelity. Overall, our approach facili-

tates improved dynamic language performance with mini-
mal cost in implementation complexity when compared with
software-only approaches.

Our framework consists of three components. First, an ef-
ficient hardware checkpoint/rollback mechanism provides a
set of transactional memory (TM) primitives to a Java vir-
tual machine (JVM). Second, the JVM exposes the TM’s
capabilities as an interface for explicit speculation. Finally,
dynamic language runtimes written in Java employ these
extensions at the implementation language level in order
to speculatively execute code with common case semantics.
With hardware and JVM support for speculation, the dy-
namic language implementation doesn’t need to know a pri-
ori when the common case applies: it can simply try it at
runtime.

We demonstrate this approach by modifying a JVM dynamic
language runtime—Jython [2], a Python implementation—
to generate two copies of code (e.g., Figure 1). First, a spec-
ulatively specialized version implements a commonly used
subset of Python semantics in Java, which by simplifying or
eliminating unused data structures and control flow, exposes
additional optimization opportunities to the JVM. Second,
a nonspeculative version consists of the original implemen-
tation, which provides correct execution in all cases. Exe-
cution begins with the faster, speculative version. If spec-
ulative code encounters an unsupported condition, an ex-
plicit transactional abort transfers control to the nonspec-
ulative version. As a result, the JVM does not need dy-
namic language-specific adaptations, and high-performance
dynamic language implementations can be written entirely
in languages such as Java and C#, maintaining the proper-
ties of safety, security and ease of debugging which distin-
guish them from traditional interpreters written in C. Even
without execution feedback to the dynamic language im-
plementation, transactional speculation leads to significant
performance gains in single-threaded code. In three Python
benchmarks run on Jython, a few simple speculation tech-
niques improved performance between 13 and 38%.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the challenges of dynamic language run-
time performance. Section 3.3 describes the components
of our framework and the optimizations we implemented in
Jython, section 4 presents our experimental method and sec-
tion 5 discusses the performance results.

y = g(x)
z = 2﹡y Compile

y = g(x)
g = frame.getglobal("g") ➝ Python function object
x = frame.getglobal("x") ➝ Python integer object
y = g.__call__(x) ➝ Python integer object

g.func_code.call(x, globals, closure)
f = new PyFrame(g.func_code, globals)
add x to Python frame object
g.func_code.call(f, closure)

Py.getThreadState() ➝ Python thread state object
finish setting up frame and closure
g.funcs.call_function(g.func_id, f)

g$1(f) [function body]
frame.setlocal(1, y)

z = 2﹡y
…

Python source Nonspeculative implementation

Specialize

begin transaction

y = g(x)
y = g_int$1(global$x) [specialized function body]

z = 2﹡y
z = 2﹡y

commit transaction

Speculative implementation

Function modified?
Global resolution modified? abort transaction
Exception? Debugging? }

Recovery

Figure 1: Potential transactional memory-aided speculative specialization of Python code.

2. BACKGROUND AND RELATED WORK
Python, Ruby, Perl and similar dynamic languages differ
substantially from historically interpreted counterparts such
as Java and Smalltalk in that large portions of their basic
data structures and libraries are written in the runtime’s im-
plementation language, typically C, rather than in the dy-
namic languages themselves. This choice substantially im-
proves the performance and practicality of these languages
even as they remain interpreted.

However, to get the best performance out of interpreted dy-
namic language implementations, programmers must ensure
that as much work as possible takes place in native code. As
a result, interpreter implementation details can inspire less-
than-optimal programming practices motivated by perfor-
mance. For example, in the CPython interpreter, function
calls are relatively expensive, so performance-critical inner
loops are typically written to minimize them. A more so-
phisticated runtime could perform inlining and specializa-
tion. Or, to sort a list by an arbitrary key, Perl and Python
have adopted an idiom known as “decorate-sort-undecorate”
in which each list item is transformed to and from a sublist
of the form (sort key, item), so the list can be sorted entirely
from compiled code instead of repeatedly invoking an inter-
preted comparator.

To reduce the need for such workarounds and improve exe-
cution performance in general, an obvious next step in dy-
namic language evolution is uniting the language and its
implementation on a single platform which can aggressively
optimize both. New dynamic language platforms do this
in one of two ways. Some write the language implementa-
tion and/or its libraries in a common language, and build a
dynamic language-specific runtime to execute it: for exam-
ple, Rubinius [12] executes Ruby on a Smalltalk-style VM;
PyPy [15] implements a translation infrastructure that can
transform a Python implementation written in a subset of
Python into an interpreter or näıve JIT, which is then com-
piled for one of several platforms. While these systems are
written targeting dynamic language semantics, they must
also incorporate dynamic optimization techniques and na-
tive code interfaces, which represents a nontrivial duplica-
tion of effort.

The other option is building on an existing, mature plat-
form: the Microsoft Common Language Runtime (CLR) or

JVM. On these platforms, dynamic language code is trans-
lated into CLR/JVM bytecode, which references implemen-
tation components written in a platform-native language
(C#/Java). Dynamic language implementations must gen-
erate code and maintain data structures to express the lan-
guages’ rich semantics in terms of more limited CLR/JVM
functionality, even for such basic operations as function in-
vocation. This semantic adaptation layer acts as a barrier
to optimization by the CLR/JVM, hindering performance.

One example of Python’s flexible semantics is method dis-
patch, which in Jython involves call frame object instanti-
ation and one or more hash table lookups (new PyFrame(...)
and frame.getglobal calls, respectively, as shown in Figure 1).
Dispatch must also simulate Python’s multiple inheritance
of classes on Java’s single inheritance model [18]. Each of
these operations is significantly more costly than dynamic
dispatch in Java.

The CLR/JVM platforms could be extended with dynamic
language-specific primitives to reduce the cost of adapta-
tion. But selecting the right set of primitives is challenging,
as each dynamic language has its own unique semantics.
We have observed that the majority of a typical dynamic
language program doesn’t exploit its language’s full seman-
tic flexibility. In fact, existing CLR/JVM platform primi-
tives can directly encode common uses of most dynamic lan-
guage features, significantly improving performance. How-
ever, without a way to identify which operations can be so
encoded without observing them during execution—which
would require hooks into the CLR/JVM internals—dynamic
language implementations cannot unconditionally generate
fast code for the common case.

While adapting the CLR/JVM to accommodate individual
dynamic languages’ semantics would be inadvisable, some
general-purpose VM additions can simplify dynamic lan-
guage implementation. For example, some CLR-based dy-
namic languages are hosted on a layer called the Dynamic
Language Runtime (DLR) [4]. The DLR implements a com-
mon dynamic language type system overlayed upon, but not
interoperable with, the underlying CLR type system, and
code generation machinery facilitating a primitive form of
runtime specialization. A DynamicSite facility [8] builds run-
time code replacement on two CLR features: delegates (akin
to function pointers) and Lightweight Code Generation (low-

overhead runtime code generation).

Such micro-scale specialization effectively reduces dynamic
dispatch overhead but does not substantially eliminate the
need for a dynamic language-specific feedback-directed opti-
mization infrastructure. In contrast, our framework for op-
timistic specialization exposes optimization opportunity to
the VM, without requiring that the dynamic language im-
plementation react to execution feedback. The dynamic
language-targeted facilities of the CLR and corresponding
forthcoming JVM features (e.g., invokedynamic, anonymous
classes and method hotswapping [16, 17]) are in fact largely
complementary to our work, allowing it to be extended to
permit runtime adaptation to misspeculation.

3. A FRAMEWORK FOR COMMON CASE
SPECULATION

We now present our framework for common case specula-
tive optimization and two specific Jython optimizations we
implemented on this framework.

3.1 Transactional memory support
Our framework employs a relatively simple, best-effort HTM
implementation with support for explicit aborts and redi-
recting control flow upon an abort. We assume a collapsed
transaction nesting model, where beginning a transaction
essentially increments a counter, ending a transaction decre-
ments it, and transaction state commits when the counter
reaches zero.

The TM system provides software with a guarantee of atom-
icity and isolation. An atomic region either commits suc-
cessfully or rolls back, undoing any changes made since the
region began. The HTM makes its best effort to execute
an atomic region given constraints such as fixed buffer sizes.
If outstanding transactional data exceeds the capacity of
the hardware to buffer it, or in other unsupported circum-
stances (e.g., I/O and system calls), the atomic region is
aborted [10]. The specific HTM primitives we use are:

Begin transaction (abort PC). Take a checkpoint and be-
gin associating register and memory accesses with the trans-
action. The abort PC argument is saved to be used when
redirecting control flow in the event the region aborts.

Commit transaction. End the region and atomically com-
mit changes.

Abort transaction. Discard changes by reverting to the
saved checkpoint, then jump to the abort PC.

3.2 JVM speculation interface
Our proposed JVM support for explicit speculation con-
structs resembles existing structured exception mechanisms:
the speculative code is analagous to the try block, assump-
tion violation to throwing an exception, and nonspeculative
code to an exception catch. As a result, we expose an inter-
face for explicit speculation in Java source and JVM byte-
code with a simple extension to the Java exception model,
as shown in Figure 2. The changes do not affect the Java
bytecode interface or compiler, which simplifies the imple-
mentation and maintains compatibility with existing tools.
Instead, changes were confined to the Java class library (to

add a new exception class, methods for introspecting abort
state and region invalidation) and the JVM itself (to output
instructions recognized by the HTM and implement atomic
region invalidation).

A speculative atomic region (1) and its fallback code (3),
which encompasses both the recovery code and original, un-
specialized code, are wrapped in a standard JVM exception
block and a new exception class. Throwing an exception of
this class triggers the JVM to emit a HTM abort instruc-
tion (2). In fact, exceptions of any class raised within an
atomic region will cause the region to abort. Transforming
any thrown exception into an abort is advantageous not only
because it reduces code size by allowing exception handlers
to be eliminated from speculative regions, but because ex-
isting JVM exception behavior (e.g., converting a processor
exception on a null pointer dereference into a Java excep-
tion) can be a more efficient substitute for explicitly checked
assertions, eliminating the corresponding checks from the
speculative path.

A critical advantage provided by speculative atomic regions
is in expanding the scope with which the JVM can perform
optimizations. Not only can the specialized code employ
simpler data structures, repetitive control flow checking for a
particular condition can be replaced by a single guard. Just
as with JVM-delimited regions [10], the JVM can eliminate
such redundant checks in regions of explicit speculation.

Speculative regions may be generated under the assump-
tion that certain global state remains unchanged (e.g., that
a function is not redefined). The speculation client code
must keep track of these regions with their corresponding
assumptions, and emit code which invalidates these regions
when necessary.1 It would of course be possible for the code
to check inside each speculative region whether any of the
global state upon which it depends has changed, but it is
more efficient to use a code bottleneck (a) which can invali-
date, or unspecialize, a region while it is not currently exe-
cuting. To perform unspecialization, the beginning of the try
block is replaced with an unconditional branch to nonspec-
ulative code, potentially pending generation of replacement
speculative code that handles the new situation. In a catch
block which is executing because the region has been unspe-
cialized, the exception’s value is null and the recovery code
does not execute.

3.3 Dynamic language specialization
With our framework, speculative regions are delineated in
advance of execution—the language implementation doesn’t
need to collect and process runtime feedback to discover
where speculation will be successful. The dynamic language
compiler also need not include explicit compensation code
which can recover from an exceptional condition encoun-
tered at any point in execution of a speculative region. When
the atomic region aborts, it reverts any changes it made and
redirects control flow to a recovery code block, which reacts
to the reason for the abort before resuming with the cor-

1Our implementation exposes references to atomic regions
as an index into a method’s exception table, though we plan
to implement a lighter-weight, opaque identifier in the future
which is better suited for lightweight runtime code genera-
tion and the JVM security model.

goto abort handler
begin transaction (abort:)

speculative implementation
…
if (failed speculation precondition)

abort transaction
…

commit transaction

try { ← atomic region label L1
speculative implementation
…
if (failed speculation precondition)

throw new SpeculationException();
…

} catch (SpeculationException e) {
if (e)

recovery code
nonspeculative implementation

}

JVM

begin transaction (abort:)
speculative implementation
…
if (failed speculation precondition)

abort transaction
…

commit transaction

Java source Transactional memory system

1

2

3

1

2

if (failed speculation precondition for L1)
invalidate atomic region L1

if (exception)
recovery code

nonspeculative implementation

a

if (failed speculation precondition)a

L1: 3

1

2

if (exception)
recovery code

nonspeculative implementation

L1: 3

Figure 2: Java language support for HTM-supported speculative specialization.

responding nonspeculative code as if speculation had never
been attempted. If an atomic region aborts because of a con-
dition that should result in a dynamic language exception,
the nonspeculative code executed afterward accumulates the
necessary exception state.

Our Jython modifications consist of three parts: a general-
purpose mechanism which forks code generation into non-
speculative and speculative versions, a mechanism for keep-
ing track of assumptions of global state (as discussed in
the previous section) and the individual optimizations them-
selves. The optimizations’ general form is shown in Figure 3.
Common case semantics are statically determined, specula-
tive regions are created by extracting the corresponding im-
plementation, assertions are inserted to ensure the common
case scenario is indeed in effect and recovery code is con-
structed by testing for and reacting to the violation of each
assertion in the aborted atomic region, then propagating
the violation to perform unspecialization of other affected
regions if needed.

One of our optimizations involves a simple modification to
the Jython library code; the other includes both compiler
and library changes.

3.3.1 Dictionary (HashMap) synchronization
The Python dictionary data structure provides an unordered
mapping between keys and values. Dictionaries are fre-
quently accessed in user code, the default storage for object
attributes (e.g., instance variables) and the basis of Python
namespaces in which both code and global data reside. Fast
dictionary lookups are essential to Python performance, as
nearly every Python function call, method invocation and
global variable reference involves one or more dictionary
lookups.

Both CPython [6] and Jython’s dictionary implementations
include specializations tailored to particular use cases. For
example, the keys of object dictionaries (object.__dict__) are
nearly always strings representing attribute names. Jython’s
PyStringMap optimizes string-keyed lookup by requiring that
the keys be interned when stored, so a string hash computa-
tion need not be performed during lookup, and permitting

ConcurrentHashMap
HashMap

pystone richards pyparsing
0.8

1.0

1.2

1.4

S
p

ee
d

u
p

 v
s.

 s
yn

ch
ro

n
iz

ed
 H

as
h

M
ap

Figure 4: Relaxing correctness and synchroniza-
tion constraints on Python dictionaries. Results ob-
tained with HotSpot; consult section 4 for configu-
ration details.

Java strings to be directly used as keys, rather than being
wrapped in an adapter implementing Python string seman-
tics.

Python dictionary accesses must be performed atomically.
Jython enforces this constraint by using a synchronized Hash-
Map (hash table) data structure for both general-purpose
PyDictionary and special-purpose PyStringMap dictionaries. A
single lock protects against simultaneous access at a cost of
8–27% in overall runtime (Figure 4).

Java 1.5 introduced a ConcurrentHashMap implementation [7]
which optimizes lock usage. While replacing the synchro-
nized HashMap with a ConcurrentHashMap improves perfor-
mance overall, the implementation has two drawbacks. First,
even on a single-core machine it is slower: on pystone, the
näıve single-lock model performs better. Second and more
seriously, ConcurrentHashMap does not conform to Python se-
mantics; in particular, while a Python dictionary’s contents
remain unmodified, repeated attempts to iterate through
it must return key-value pairs in the same order. With

Original code (unspecialized)

Atomic region
(specialized)

Jython library function

Jython library function

Jython library function

Jython generated code

+

Recovery code

• Extract abort information
• Transform data structures
• Unspecialize related regions

Abort

Guard/
Assertion

Common case

Jython library function

Jython library function

Jython library function

!

!

Commit

Begin

Figure 3: Transactional memory-aided speculative specialization of Jython code.

ConcurrentHashMap, the iteration order may change under
some access patterns even though the dictionary contents
do not.

By using hardware atomic regions for speculative lock elision
(SLE) [13], uncontended access to a synchronized HashMap
can perform as well as the unsynchronized version. Synchro-
nization overhead can be eliminated entirely when accesses
are already subsumed by a larger atomic region, as will usu-
ally be the case.2

3.3.2 Caching globals
We next chose to address the overhead associated with ac-
cessing Python module-level globals (typically defined at the
top level of a source file) and “builtins” (basic type names,
constants, functions and exceptions such as int and None,
which would be keywords in many other languages). While
local variable references are resolved at compilation time
(typically as an array access), global and builtin name ref-
erences are looked up in a dictionary at runtime [19].3

Jython compiles each module (usually corresponding to a
source file) to a Java class. It converts the Python code,

1 def f():
2 g(x)

representing an invocation of a module function g from an-
other function f with a module global variable x as a param-
eter, into Java as:

2The results in Figure 4 were obtained on a single-core ma-
chine; the speedup obtained using SLE is even greater on a
multicore machine, where the JVM’s uniprocessor optimiza-
tions do not apply.
3Since globals shadow builtins, a builtin resolution involves
one unsuccessful (global) and one successful (builtin) hash
probe.

1 private static PyObject f$1(PyFrame frame) {
2 frame.getglobal("g").__call__(frame.getglobal("x"));
3 }

While the externally visible Python namespace representa-
tion must remain a dictionary for compatibility, its inter-
nal representation can be speculatively optimized for per-
formance by exploting the characteristic access pattern of
dictionaries used for instance variable and namespace stor-
age. Early in their lifetime, these dictionaries are populated
with a set of name-value pairs. Thereafter, the values may
change but the set of names is unlikely to do so.

To take advantage of this behavior, we modified the Jython
compiler to keep track of global and builtin references as
they are compiled, emit corresponding static variable dec-
larations, and cache the global and builtin values in these
static variables during module loading. With this optimiza-
tion, the code becomes:

1 private static PyObject global$g, global$x;
2 private static PyObject f$1(PyFrame frame) {
3 try {
4 global$g.__call__(global$x);
5 } catch (SpeculationException e) {
6 frame.getglobal("g").__call__(frame.getglobal("x"));
7 }
8 }

We additionally subclass PyStringMap with a version that
redirects reads and writes to the module dictionary’s g and
x keys to the corresponding static fields. This does slow
down access through this dictionary by unspecialized code
(specialized code uses the fields directly), but since such ac-
cesses are both infrequent and dominated by a hash table
lookup, this is a reasonable tradeoff.

Similarly, attempts to delete x must be trapped. In this case,

we do not simply redirect the deletion but invalidate the
atomic region in f$1, because there’s no way to represent the
semantics of Python deletion with a Java static field. If, for
example, we used the Java null value to represent a deleted
variable, by dereferencing a null global$g would generate a
NullPointerException, but passing null to g would convert it
into a Python None object instead of producing the expected
Python NameError as required by Python semantics when an
undefined variable is accessed.

3.3.3 Frame specialization
Python allows extensive introspection of executing program
state, primarily for the purposes of debugging and exception
handling [20]. While these facilities differ little from those of
languages, including Java itself, for which dynamic compila-
tion replaced interpretation, Jython cannot rely on the JVM
to reconstruct Python execution state when it is requested,
so it must maintain the state itself during execution (VM
extensions may offer alternate approaches, e.g. [3]). This
entails a significant amount of wasted work in the common
case, when this state is never accessed.

Jython maintains the Python execution stack as a linked list
of frame (PyFrame) objects, one of which is passed to the Java
method generated from each Python function or method.
Frame objects expose local variables including parameters,
global variables, exception information and a trace hook for
debuggers [21]; a simplified version of the PyFrame operations
performed on a Python function call appears in Figure 1. An
additional attribute represents the current Python bytecode
index, though this is infrequently accessed and Jython does
not maintain it.

While we have not yet implemented any automatic frame
specializations in the Jython compiler, some of our early
results from frame elimination are presented in section 5.1.

4. EXPERIMENTAL METHOD
Our goal in these experiments was to quickly explore the
performance potential of dynamic language runtime opti-
mizations enabled by transactional execution. We executed
three Python benchmarks, pystone, richards and pyparsing, on
a real machine while simulating the effects of a HTM.

The first two of these benchmarks are commonly used to
compare Python implementations: pystone [1] consists of
integer array computation written in a procedural style;
richards [22] is an object-oriented simulation of an operat-
ing system. Both are straightforwardly written but non-
idiomatic Python, ported from Ada and Java, respectively;
we expected them to uniformly exhibit common case behav-
ior. In contrast, pyparsing [9] uses Python-specific features to
implement a domain-specific language for recursive descent
parsers; we chose it as an example of code which is both
potentially performance-critical and exploits the language’s
semantics.

Speedups gained from common case speculation rely on in-
validation being an infrequent occurrence. While none of
the the benchmarks’ code violated any specialization pre-
conditions, pyparsing uses exceptions as a form of control
flow; Python exceptions inside specialized code cause the
containing atomic region to abort. Since pystone and richards

JIT warmup

execution

va
lid

 r
eg

io
n

s

sp
ec

ia
liz

at
io

n

Figure 5: Typical atomic region invalidation profile.

did not raise exceptions, no conflict-related transactional
aborts would occur. Aborts would instead stem from con-
text switches, I/O and system calls. Of the benchmarks,
only pyparsing performs any I/O from Python code, and the
functions containing I/O already executed unspecialized be-
cause they indirectly raise exceptions.

Because the atomic regions in our benchmarks thus divide
cleanly into “always abort” and “never abort” groups, we
can approximate the steady state performance—i.e., per-
formance after no more invalidations occur—of a single-
threaded workload on a HTM-enabled JVM with a real ma-
chine without HTM, akin to measuring timings after JIT
warmup. We accomplished this by modifying the compiler’s
output as if the“always abort”regions had been permanently
invalidated, so that the original code always executed.

As we had no capability to roll back execution in these
real-machine experiments, we configured the JVM excep-
tion handlers associated with atomic regions to abort the
process if triggered. With an actual HTM, the exception
handlers would execute recovery code instead; subsequent
executions would take the nontransactional fallback path.
Recovery and nonspeculative code was still present in the
running system, such that any performance loss attributable
to code size growth should be accounted for by these results.

For the optimizations presented thus far, specialization is
performed once, in the Jython compiler. As code which vi-
olates specialization assumptions is encountered during ex-
ecution, the corresponding regions are permanently invali-
dated. Many performance-critical dynamic language appli-
cations are long-running servers, whose invalidation profiles
should resemble Figure 5. Most invalidations would occur
early in execution as code is first encountered and JIT is still
actively compiling.

Just as “server” JITs’ aggressive compilation strategies slow
startup, early invalidation-related slowdowns are likely to be
an acceptable tradeoff for higher sustained performance. In
practice, HTM rollback latency would be unlikely to mat-
ter: the hardware rollback time would be overshadowed by
recovery and fallback code execution. It would be possi-
ble to construct pathological cases in which region invalida-
tion occurred frequently throughout execution, thus making
the recovery path performance-critical, however for ordinary
programs (and our benchmarks) this is extremely unlikely.

We selected two JVMs which execute Jython the fastest:

BEA JRockit (build R27.3.1-1-85830-1.6.0_01-20070716-1248-
linux-ia32) and Sun HotSpot Server (build 1.6.0_02-b05). The
JVM extensions we propose are not specific to any particular
implementation; with the exception of honoring invalidation
requests in recovery code, the JVM is permitted to execute
any combination of specialized and unspecialized code for
optimal performance.

Experiments were run on an Intel Core 2 Duo E6700 with
Linux kernel 2.6.9-55.0.12.EL, using a single core in 32-bit
mode. We used Jython’s “newcompiler” and modern branch
(r4025). To account for JVM warmup and execution varia-
tion, Jython speedups are based on the minimum runtime
of ten benchmark executions per session over five JVM exe-
cution sessions.

For comparison, we include results from the CPython 2.4.3
interpreter and Psyco 1.5.1. Psyco, a just-in-time specializer
for CPython [14], executes these benchmarks faster than any
other Python implementation, at the expense of imperfect
language compatibility and potentially unbounded memory
use. As Psyco uses a simple template-based code generator,
the Psyco results represent a lower bound on the perfor-
mance of a Python-specific just-in-time compiler.

One important and unexplored question regarding these op-
timizations is whether atomic region boundaries, represent-
ing explicit speculation’s scope, can be established during
code generation—for example, at all function boundaries
and loop back edges—or must be adjusted at runtime for
optimal performance. In order to answer this question, we
plan to measure transaction footprint and abort behavior
with a full-system HTM simulation. Our previous work
with dynamic language runtimes in simulated HTM environ-
ments, including a transactional Psyco executing the same
benchmarks we present here, has not identified transactional
cache overflows as a common issue. While it is possible
that Java’s memory access patterns may differ enough to
affect the transaction footprint, existing work using hard-
ware atomic regions for specialization in Java suggests that
careful tuning of region sizes is not essential [10].

5. RESULTS
We express Jython performance with and without specula-
tive optimizations as speedups relative to interpreted CPy-
thon execution, as this is the baseline which would make the
most sense to Python users. Performance differs substan-
tially between the tested JVMs, whose just-in-time compil-
ers were independently implemented; HotSpot always out-
performs JRockit except in pyparsing.

Figure 6 includes the automated speculative optimizations
we implemented in Jython, as described in section 3.3: spec-
ulative lock elision for dictionary access (HashMap) and elim-
ination of hash table lookups in global and builtin access
(cache_globals). Performance improvement varies according
to the nature of each benchmark, which we now discuss in
turn.

pystone contains primarily computation and function dis-
patch. Jython’s baseline pystone performance already ex-
ceeds CPython’s because numerical operations are encoded
efficiently as their Java equivalents. Python function calls’

flexible semantics are costly to implement in Jython, as they
are in CPython, but because Python functions are declared
as module-level globals, caching these values eliminates hash
table lookups from each function invocation.

richards benefits comparatively less from global caching be-
cause most of its dispatch overhead is in the form of instance
method invocations, which involve dictionary access. In ad-
dition, richards uses the dictionary storage mechanism for
the instance variables of its primary data type. Elimination
of synchronization overhead from these frequent dictionary
accesses is responsible for the majority of the performance
improvement. With a few more simple optimizations Jython
can even outperform Psyco on the richards benchmark, as
discussed in the following section.

The pyparsing results demonstrate the potentially large base-
line performance gap between Jython and interpreted execu-
tion. While pyparsing includes both object-oriented dispatch
and frequent dictionary access, execution is dominated by
complex control flow. In particular, pyparsing uses Python
exceptions to implement backtracking. Python exceptions
in Jython incur a double penalty: in stock Jython, the com-
plex Python exception state is re-created at the beginning
of a Jython exception handler, regardless of whether or not
it is used. pyparsing’s exception handlers do not examine the
exception state, thus this behavior causes needless object al-
location. The majority of the methods in pyparsing do indeed
either raise an exception or invoke a method which does, so
speculative versions are rarely executed and little benefit is
achieved.

5.1 More richards optimizations
To explore the performance potential of Jython with more
aggressive speculative optimization, we manually applied
several additional transformations to the richards benchmark,
in addition to the HashMap and cache_globals optimizations
discussed in the previous section. These changes target the
primary bottleneck in richards: accesses to objects of class
TaskState (representing processes in an OS scheduler simula-
tion) and its subclasses. Figure 7 graphs the performance
improvement.

Jython does not generate Java classes for user-defined Py-
thon classes such as TaskState. Instead, instance methods of
these classes are defined as static methods of a class corre-
sponding to the module in which the class is defined. For ex-
ample, TaskState.isTaskHolding(), which returns its task_holding
attribute, compiles to:

1 public class richards {
2 private static PyObject isTaskHolding$22(PyFrame frame) {
3 return frame.getlocal(0).__getattr__("task_holding");
4 }
5 ...

task-class. Optimize access to TaskState attributes by storing
them in Java instance variables rather than in a PyStringMap.
Attempts to access the dictionary directly are redirected to
the instance variables, as with the cache_globals optimiza-
tion (Section 3.3.2); recovery is only necessary when the
default attribute access behavior is overridden. If the cast
to TaskState fails, a Java exception is raised which triggers a

HashMap+cache_globals
HashMap
unmodified

pystone richards pyparsing
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p

ee
d

u
p

 v
s.

 C
P

yt
h

o
n

6.00

Jython/JRockit
Jython/HotSpot
Psyco

Figure 6: Jython and Psyco speedups over CPython on three Python benchmarks.

task-class
virt-frames
virt-methods

Psyco

Jython/JRockit Jython/HotSpot Psyco
0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p

ee
d

u
p

 v
s.

 C
P

yt
h

o
n

Figure 7: Hand-optimized Jython and Psyco
speedups over CPython on the richards benchmark.

rollback; the original code will then generate the Pythoni-
cally correct TypeError.

1 public class TaskState extends PyObjectDerived {
2 PyObject task_holding;
3 /∗ rest of class ∗/
4 }
5 private static PyObject isTaskHolding$22(PyFrame frame) {
6 try {
7 return ((TaskState)frame.getlocal(0)).task_holding;
8 } catch (SpeculationException e) {
9 /∗ recovery/nonspeculative code ∗/

10 }
11 }

virt-frames. For TaskState methods implemented as static meth-
ods, eliminate the intermediate PyFrame argument used to
encapsulate the method’s parameters and local variables.
An atomic region surrounds the call site rather than the
callee. Recovery is needed if a method is redefined; any
atomic region containing code which directly references the
static method must be invalidated. The PyFrame version of

the method remains for compatibility with separately com-
piled code.

1 private static PyObject isTaskHolding$22(TaskState t) {
2 return t.task_holding;
3 }
4 private static PyObject isTaskHolding$22(PyFrame frame) {
5 /∗ nonspeculative code ∗/
6 }

virt-methods. Move the TaskState method implementations into
the TaskState class. While one might expect invoking a static
method with a class’s instance as its first argument would
be as fast as an instance method on that class, the latter
was faster with both tested JVMs.

1 public class TaskState extends PyObjectDerived {
2 /∗ rest of class ∗/
3 public PyObject isTaskHolding() {
4 return task_holding;
5 }
6 }

6. CONCLUSION
In this paper, we have demonstrated that hardware trans-
actional memory systems can facilitate the development of
high-performance dynamic language implementations by ex-
posing a simple interface for expressing common case specu-
lation. A low-overhead hardware checkpoint/rollback mech-
anism can offer a largely transparent form of runtime adap-
tation, while the simplicity of common case code is an effec-
tive target for existing dynamic optimization systems.

7. ACKNOWLEDGMENTS
The authors wish to thank Paul T. McGuire for provid-
ing the Pyparsing Verilog parser benchmark and Jim Baker,
Philip Jenvey and Tobias Ivarsson for assistance with Jython.
Pierre Salverda and the anonymous reviewers offered valu-
able suggestions.

References
[1] Pystone benchmark. URL http://svn.python.org/

projects/python/trunk/Lib/test/pystone.py.

[2] J. Baker et al. The Jython Project. URL http://

jython.org/.

[3] J. Clements. Portable and high-level access to the stack
with Continuation Marks. PhD thesis, Northeastern
University, 2006.

[4] J. Hugunin. A Dynamic Language Runtime
(DLR). URL http://blogs.msdn.com/hugunin/

archive/2007/04/30/a-dynamic-language-runtime-

dlr.aspx.

[5] J. Hugunin et al. IronPython: a fast Python im-
plementation for .NET and ECMA CLI. URL http:

//www.codeplex.com/IronPython.

[6] A. Kuchling. Beautiful Code, chapter 18, Python’s Dic-
tionary Implementation: Being All Things to All Peo-
ple. O’Reilly, 2007.

[7] D. Lea et al. JSR 166: Concurrency Utilities. URL
http://jcp.org/en/jsr/detail?id=166.

[8] M. Maly. Building a DLR Language - Dynamic
Behaviors 2. URL http://blogs.msdn.com/mmaly/

archive/2008/01/19/building-a-dlr-language-

dynamic-behaviors-2.aspx.

[9] P. McGuire. Pyparsing: a general parsing module for
Python. URL http://pyparsing.wikispaces.com/.

[10] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan,
and C. Zilles. Hardware atomicity for reliable software
speculation. In Proceedings of the 34th Annual Inter-
national Symposium on Computer Architecture, June
2007.

[11] C. Nutter et al. JRuby: a Java powered Ruby imple-
mentation. URL http://jruby.codehaus.org/.

[12] E. Phoenix et al. Rubinius: The Ruby virtual machine.
URL http://rubini.us/.

[13] R. Rajwar and J. R. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In
Proceedings of the 34th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, Dec. 2001.

[14] A. Rigo. Representation-based just-in-time specializa-
tion and the Psyco prototype for Python. In PEPM’04,
August 2004.

[15] A. Rigo and S. Pedroni. PyPy’s approach to virtual
machine construction. In OOPSLA Dynamic Languages
Symposium, Portland, Oregon, October 2006.

[16] J. Rose. Anonymous classes in the VM. URL
http://blogs.sun.com/jrose/entry/anonymous_

classes_in_the_vm.

[17] J. Rose et al. JSR 292: Supporting Dynamically Typed
Languages on the JavaTM Platform. URL http://jcp.

org/en/jsr/detail?id=292.

[18] G. van Rossum. Unifying types and classes in Py-
thon 2.2, April 2002. URL http://www.python.org/

download/releases/2.2.3/descrintro/.

[19] G. van Rossum et al. Python reference manual: Nam-
ing and binding. URL http://docs.python.org/ref/

naming.html.

[20] G. van Rossum et al. Python library reference: The

interpreter stack. URL http://docs.python.org/lib/

inspect-stack.html.

[21] G. van Rossum et al. Python reference manual: The
standard type hierarchy. URL http://docs.python.

org/ref/types.html.

[22] M. Wolczko. Benchmarking Java with Richards and
DeltaBlue. URL http://research.sun.com/people/

mario/java_benchmarking/.

