
© 2009 Nicholas J. Riley

EXPLICIT SOFTWARE SPECULATION
FOR DYNAMIC LANGUAGE RUNTIMES

BY

NICHOLAS J. RILEY

B.A., Brandeis University, 1999

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Assistant Professor Craig Zilles, Chair
Associate Professor Vikram Adve
Assistant Professor Matthew I. Frank
Research Associate Professor Ralph Johnson
Associate Professor Samuel Kamin

Abstract

While dynamic languages are now mainstream choices for application development,

most popular dynamic languages are primarily executed by interpreters whose perfor-

mance and capabilities restrict their wider application. The only successful remedy

for these limitations has been dynamic optimization infrastructures developed specif-

ically for each language. Building such infrastructures is a substantial undertaking.

This dissertation presents explicit software speculation, which encloses common or

expected case code in atomic regions. A best-effort hardware transactional memory

executes a region speculatively when specified assumptions, or correctness constraints,

permit. When an assumption becomes invalid, the hardware and runtime software

transition to corresponding nonspeculative, fallback code which executes correctly,

albeit more slowly, under all circumstances.

I demonstrate that explicit speculation improves the performance of dynamic

language implementations on existing managed runtimes by speculatively executing

dynamic language code with a common case interpretation of the language semantics.

I implement a variety of optimizations at a high level, maintaining correct execution

without requiring the sophisticated static analysis, language-specific runtime profiling

infrastructure or potentially intricate, low-level recovery code that would be otherwise

necessary. In addition, I explore how explicit speculation can guarantee speculative

optimization correctness in an unmanaged dynamic language runtime by utilizing

additional hardware support for fine-grain memory protection.

ii

In memory of my mother, Dr Julia H Riley.

iii

Acknowledgments

If there is a single reason I made it to the other side of my Ph.D., it is the patient

guidance of my advisor, Craig Zilles. Virtually everything I know about the process

of research I have learned by his example. Like all good teachers, he gives others

the capability to learn independently, with the desire for self-improvement to last a

lifetime.

This work would not have been practical without the dynamic language imple-

mentations upon which it builds. Thanks to the Jython developers Jim Baker, To-

bias Ivarsson, Philip Jenvey and Frank Wierzbicki—and to the PyPy and Psyco

developers, especially Samuele Pedroni and Armin Rigo, for sharing their knowledge.

Hadley Wickham saved me a great deal of time in the last few months with ggplot2,

his capable plotting software that is a joy to use.

I would like to thank my committee for their input. Ralph Johnson volunteered

to read several drafts of this document, helped me put my work in context, encour-

aged collaboration and offered useful advice. Sam Kamin’s comments significantly

improved the clarity of what follows. Vikram Adve asked many good questions,

investigations of which have unquestionably benefited my work.

The staff of the Medical Scholars Program have been, since my first interview on

campus, unfailingly decent, generous, caring and supportive. Working with the MSP,

I began to understand how truly hard they try to ensure their students’ success. The

mission statement in their email signatures is no empty promise.

My fellow students in Prof. Zilles’s research group, particularly Naveen Neelakan-

iv

tam, Lee Baugh and Pierre Salverda, have offered assistance, companionship and a

sounding board for my ideas. The University of Illinois student chapter of the Associ-

ation for Computing Machinery has given me a second home and years of wonderful

memories. My friends, who long since stopped asking when I was going to grad-

uate, have nevertheless supported me through the process—thank you, Jon Roma,

Dan Sachs, Ben Staffin, David Stipp and Nicholas Straker.

Finally, I would not be where I am without my parents, with whom I have cel-

ebrated successes and whose love, counsel and belief in my ability have helped me

through hard times. I only hope I can give back as generously as I’ve received.

v

Table of Contents

Chapter 1 Introduction . 1
1.1 An example . 2
1.2 Overview . 4
1.3 Summary . 6

Chapter 2 Background . 9
2.1 Hardware atomic region execution . 9
2.2 Speculation and specialization . 11
2.3 Dynamic languages and managed runtimes 13

Chapter 3 Explicit speculation . 18
3.1 Atomic regions and runtime interaction 18
3.2 Implementing speculative optimizations 21

3.2.1 Characterizing the common case 21
3.2.2 Writing speculative code . 24
3.2.3 Managing speculative data . 25
3.2.4 Exceptions and control flow 27
3.2.5 Assumption checks . 30

Chapter 4 Explicit speculation on managed runtimes 34
4.1 Speculative optimizations in Jython 34

4.1.1 Experimental method . 36
4.1.2 Dictionary (HashMap) synchronization 38
4.1.3 Global caching . 40
4.1.4 Eliminating exception metadata 42
4.1.5 Joni . 43
4.1.6 Direct local variable access (unframe locals) 44
4.1.7 Direct dispatch . 45

4.2 Atomic region usage . 48

Chapter 5 Explicit speculation on unmanaged runtimes 55
5.1 Fine-grain memory protection hardware 56
5.2 Psyco and specialization-by-need . 58
5.3 Ensuring correct speculation in Psyco 60

5.3.1 Class attribute caching and dictionary watching 60

vi

5.3.2 Class changing and recovery 64
5.3.3 UFO in atomic regions . 67

5.4 Other assumptions . 68
5.4.1 Class attributes with multiple inheritance 68
5.4.2 Changing bases . 68
5.4.3 Builtins . 69
5.4.4 Changing tp getattro and getattribute 69
5.4.5 Runaway operations . 70

5.5 Results . 70

Chapter 6 Conclusion . 75
6.1 Explicit speculation for dynamic languages 77
6.2 Future directions . 78

References . 80

Author’s Biography . 84

vii

Chapter 1

Introduction

Dynamic languages such as Python and Ruby are increasingly popular choices for

general-purpose application development. Programmers value their unique features,

pragmatic design and rapid evolution. However, their interpreted implementations

restrict their applicability. Attempts to build faster, more sophisticated implementa-

tions [19, 30, 36] have been frustrated by the need to preserve compatibility with the

languages’ flexible semantics.

This dissertation introduces explicit software speculation as a technique for

building optimized yet fully compatible dynamic language runtime systems. A system

implementing explicit speculation makes speculation accessible to the high-level lan-

guage programmer as an optimization technique. It differs in this way from existing

hardware, compiler and runtime-managed speculation methods in which speculation

occurs transparently to the application programmer.

I evaluate the effectiveness of speculatively executing Python programs, where

possible, by assuming common case interpretations of language semantics. With

hardware support for atomic region execution, the resulting simpler, thus easier to

optimize, speculative code can execute at full speed. If an executing program en-

counters a situation outside the expected common case, explicit speculation performs

hardware-assisted rollback and recovery, then re-executes along an alternate path

which provides full semantic fidelity. Overall, explicit software speculation facili-

tates improved dynamic language performance with minimal added implementation

complexity when compared with software-only approaches.

1

1.1 An example

A user of explicit speculation begins with an existing, correct region of code that

could be simplified and made faster by assuming a common case scenario holds true

for the duration of its execution. Consider the following Python code:

1 global g, x
2

3 def g(i):
4 return i
5

6 x = 5
7 y = g(x)

Jython, an implementation of Python on the Java virtual machine (discussed

further in Section 4.1), would translate line 7 into Java as:1

1 x = frame.getglobal("x") // → Python integer object
2 g = frame.getglobal("g") // → Python function object
3 y = g. call (x) // → Python integer object
4 g.func code.call(x, globals, closure)
5 f = new PyFrame(g.func code, globals) // stack frame for g
6 // add parameter x to Python frame object
7 g.func code.call(f, closure)
8 Py.getThreadState() // → Python thread state object
9 // finish setting up frame and closure

10 g.funcs.call function(g.func id, f)
11 g$1(f) // [function body]
12 frame.setlocal(1, y) // write to local variable

Because the Java virtual machine’s semantics for variable lookup, method invo-

cation and local variable access are insufficiently flexible to implement their Python

counterparts, Jython employs a series of wrapper objects and operations. For a

Python function invocation, Jython performs several hash table lookups and con-

structs an object representing the stack frame before invoking the Java method im-

plementing the desired Python function.

1For clarity, in this and subsequent examples I approximate Jython’s output in Java, though the
Jython 2.5 compiler produces bytecode which has no direct Java source equivalent.

2

In most cases, the Java semantics for these operations are sufficient; the additional

information encoded in Jython’s wrapper objects are never used. However, the Java

virtual machine usually can’t eliminate the code which populates these data structures

because it is unable to determine they won’t be used. With explicit speculation, the

user expresses a set of common case assumptions about the environment under which

the call to g is executed and modifies the Jython compiler to output speculative code

of the form:

1 local$y = global$g function(global$x)

The common case assumptions, or their converse—the cases in which the specu-

lative code would no longer be valid, include:

1. Redefinition of g. The Java virtual machine semantics support neither arbitrary

method replacement of the called function nor replacement of the caller or call

site if it is currently executing (though this is changing [39]).

2. Evaluation with an arbitrary object implementing the Python mapping interface

representing the global or local namespace. Java provides no equivalent method

for executing arbitrary code when a variable is accessed.

3. An invocation of the locals() or globals() function. These functions return map-

ping objects which reflect the bindings of each name in scope at the call site. If

Java’s scoping rules were used speculatively instead, the corresponding variables

may no longer be accessible.

While the above-described situations are uncommon, it is not reasonable to assume

they will never occur. For example, while locals() and globals() are mainly intended

as debugging aids, some Python programs use locals() as a data source for string

formatting, such as:

1 x = 5
2 y = 7

3

3

4 print 'x is %(x)d, y is %(y)d' % locals()

which produces the result x is 5, y is 7.

The explicit speculation runtime uses either explicit tests in code or hardware

conflict detection to detect when an assumption is no longer valid. It initially reacts

to the invalidation of a common case assumption by ensuring that any dependent

speculative code does not and will not execute. For example, if g is redefined in

another executing thread, any speculative optimizations that depend on the now-

invalid assumption need to be reverted. Wrapper objects which were speculatively

eliminated may need to be restored.

Without explicit speculation, the greater a speculative optimization’s scope, the

more complex it becomes to recover the state necessary to honor the full generality of

language semantics on demand. By buffering speculative state in hardware, explicit

speculation eliminates much of the complexity of recovering from misspeculation.

1.2 Overview

A program that uses explicit speculation consists of three components, shown in Fig-

ure 1.1. First are regions of common case speculative code. Second, corresponding

general-purpose, nonspeculative fallback code correctly handles the uncommon case

as well. Fallback code may be written conservatively or even inefficiently, as it or-

dinarily will not execute. Last, a set of assumptions make explicit the conditions

under which the common case speculative code is correct.

Speculation assumptions consist of assertions about data or control flow in the

executing program. Assumptions can be invalidated at any time; the runtime system

evaluates these assumptions and dispatches to the appropriate version of the code.

If an assumption is violated while an affected speculative region is not currently exe-

4

!!M
AN

AG
ED

NA
TI

VE

Baseline hardware

Managed runtime

Operating system and libraries

Managed code

!
Speculative

+
Nonspeculative Assumptions

+

Atomic Invalidation

Recovery
code

Remove
speculationRegion “try”

Abort

Figure 1.1: Implementing explicit speculation on a managed runtime.

cuting, the region is modified such that nonspeculative code executes unconditionally

in the future, potentially pending generation of replacement speculative code that

handles the new situation.

Speculative code is placed in atomic regions, such that each region’s execution is

logically buffered and isolated pending its completion. Potential region boundaries

may be delineated in advance of execution: the application doesn’t need to generate

and process runtime feedback to discover them. If common case speculative code is

executing at the time one of its assumptions is invalidated, the speculative region

must atomically undo, or roll back, any changes it made. The runtime then redirects

control flow to the corresponding nonspeculative code as if speculation had never

been attempted.

Guaranteed assumption enforcement and atomic rollback simplify the program-

ming model for explicit speculation. The programmer doesn’t need to handle the

mechanics of speculation; instead, application-provided information guides the run-

time and hardware to speculate where advantageous. Explicit speculation resembles

exception handling: a region of common case speculative code corresponds to the

try ; equivalent general purpose, nonspeculative fallback code inhabits the body of

the catch. When the common case code can’t handle a situation, it may “give up”

by throwing an exception (thus expressing a simple control flow assumption). Unlike

when handling an exception, the application need not include explicit compensation

5

code to recover from an assumption violation or other exceptional condition encoun-

tered during execution of a speculative region.

Even a sophisticated implementation of explicit speculation requires no systemic

modifications to the managed runtime or lower layers. A managed runtime’s com-

piler, just as the programmer, may treat explicit speculation as a special case of

exception handling. By employing best-effort atomic region execution hardware (pro-

posed in contexts including transactional memory and speculative compiler optimiza-

tions [6, 10, 28] and implemented in Azul Systems’ compute appliances and Sun’s

forthcoming Rock processor [9, 15]), exclusively speculative execution incurs no per-

formance penalty in the common case. An efficient implementation can optimize

assumption validation and choose the version of code to execute based on execution

feedback. For example, if a speculative region is likely to never be valid, it is a waste

of time to try.

Hardware atomic execution, when compared with software-only methods, is par-

ticularly beneficial for explicit speculation. Most importantly, the runtime need not

painstakingly track execution state for recovery on assumption invalidation. A given

assumption needs to be checked at most once per region, assuming no code within

the region itself may violate it. The runtime can move these assumption checks early

in the region and coalesce adjoining regions with identical assumptions to eliminate

redundant checks.

1.3 Summary

The principal objective of my work is to investigate the utility of applying previously

proposed mechanisms for hardware atomic region execution to a novel area: dynamic

language runtime implementation. In doing so, I explore the structure and mecha-

nisms of explicit speculation in both managed and unmanaged runtime environments.

6

My primary focus is improving the performance of managed runtime dynamic lan-

guage implementations, by providing Java virtual machines’ sophisticated optimizers

with simpler and easier-to-optimize common case code and data structures. I also

demonstrate the use of additional hardware for fine-grain memory protection in im-

proving unmanaged runtimes’ safety.

Explicit speculation addresses a significant outstanding problem facing most dy-

namic language implementers. In particular, it simplifies the implementations of

several optimizations which would otherwise require sophisticated static analysis or

runtime feedback systems.

The concepts of explicit speculation simply and logically extend existing and near-

future managed runtime abstractions and facilities. Much as hardware exception han-

dling and synchronization primitives were first made available in high-level languages

as library functions and later incorporated directly as programming language con-

structs, the methods of explicit software speculation expose hardware atomic region

execution to language developers and users.

Ad hoc optimizations implemented using explicit speculation require little support

infrastructure and may be written in a high-level language running on a managed

runtime with little if any coupling to the particular runtime and hardware platform.

With experience, abstractions for handling speculative code, data structures and

assumptions can enable more sophisticated optimizations.

The primary issue, I discovered, limiting explicit speculation’s applicability is

that of coordinating hardware atomic region size with optimization scope. For some

applications, reduced scope translates into reduced performance. My results suggest

that certain control flow structures would be better served by a more sophisticated

region selection strategy than the simple inlining-like aggregation of regions with

predetermined boundaries I performed.

The remainder of my dissertation is organized as follows. Chapter 2 presents

7

background on the hardware and software infrastructure which underlies explicit

speculation. Chapter 3 describes the process of writing optimizations with explicit

speculation. Chapter 4 applies explicit speculation to speculative performance opti-

mizations in Jython, a managed runtime dynamic language implementation. Chap-

ter 5 extends explicit speculation to ensuring correct execution of existing speculative

optimizations in Psyco, an unmanaged dynamic language implementation. Finally,

Chapter 6 discusses potential future development directions for the hardware and

software implementing explicit speculation.

8

Chapter 2

Background

My work has focused on the use of existing and proposed hardware mechanisms to

improve dynamic language performance while maintaining correctness. The following

sections present background material on one of these mechanisms—hardware atomic

region execution (the other is discussed in Section 5.1)—as well as speculation and

specialization, dynamic languages and managed runtimes.

2.1 Hardware atomic region execution

With the recent proliferation of multicore processors, the research community has

refocused its attention on primitives for concurrency control, to address the well-

known shortcomings of locks [44]. Two mechanisms that facilitate writing correct,

high-concurrency programs are Transactional Memory (TM) (e.g., [3, 8, 17, 27, 34]

and Speculative Lock Elision (SLE) [32, 33]. These techniques permit potentially-

conflicting critical sections to be (optimistically) executed concurrently and rolled

back if a conflict occurs. Azul Systems’ compute appliances and Sun’s forthcoming

Rock processor [9, 15]) implement hardware support for SLE and TM. Given that

current microprocessor vendor roadmaps project an exponential growth in the number

of cores over time, it is widely anticipated that additional mainstream microprocessors

will include hardware support for one or both of these techniques in the future.

While SLE and TM provide different interfaces to the programmer, the hardware

necessary to support them is rather similar. SLE is designed to permit optimistic

9

execution of existing lock-synchronized code. As such, SLE is merely a performance

optimization, since it can fall back on locks to protect critical sections whose needs

outstrip the available hardware buffering capability. In contrast, TM is a new pro-

gramming model in which a programmer annotates critical sections as needing to

execute atomically. As a result, TM systems need to provide support for transactions

of arbitrary size, although many proposed hardware TM1 (HTM) systems provide

high performance for transactions that fit in processor caches, with somewhat lower

performance for larger transactions.

The hardware necessary to support both SLE and in-cache transactions consists

of three components: 1) support for checkpointing the register file, 2) support for

speculative buffering and atomic commit of memory stores, and 3) support for de-

tecting read-write or write-write conflicts with other threads. The first mechanism

is straightforward; the others are generally built by overloading an existing cache co-

herence protocol. Typically, two bits are added for each cache line for tracking which

cache lines have been transactionally read and which written. If an invalidation (or

downgrade for written lines) is received from the coherence protocol for a cache line

with bits set, the atomicity of the transaction could potentially be violated, so an

abort is signalled (invalidating transactionally written lines and clearing the bits).

To ensure that data is not lost on an abort, the cache must write back a dirty line

before transactionally writing to it, so that there is copy of the most recent non-

transactional data somewhere in the system. To commit a transaction, the bits are

cleared making the writes visible to other threads. For transactions that fit in the

cache, it is expected that these mechanisms can be implemented with little or no

overhead relative to non-transactional execution.

The specific implementation I consider in this work is a best-effort HTM similar

1In this work, I focus on hardware TM systems. While software TM (STM) systems can likely
provide the necessary semantics, it is still an open question whether the overhead of STM systems
preclude their use in performance optimization.

10

to that used in previous work [6]. It can be viewed as either a subset of the function-

ality in most HTM proposals, or like SLE without the ability to automatically detect

critical sections. I model atomic region execution hardware which is exposed to soft-

ware with a standard TM interface and permits speculative execution of working sets

that fit in the first-level cache. Overflowing the cache results in the transaction being

aborted. Processor interrupts or exceptions received during transactional execution

also cause the transaction to abort.

The model includes support for explicit aborts and redirecting control flow upon

an abort. The specific hardware primitives I use are:

• Begin atomic region (abort PC). Take a checkpoint and begin associating

register and memory accesses with the region. The abort PC argument is saved

to be used as a jump target if the region aborts.

• Commit region. End the region and atomically commit changes.

• Abort region. Discard changes by reverting to the saved checkpoint, then

jump to the abort PC.

A special-purpose atomic region state register provides a means to determine

whether code is currently executing within an atomic region and to query the cause

of the most recent region abort.

2.2 Speculation and specialization

Speculation improves performance by predicting that software will repeatedly use

the same subset of its functionality. Hardware predictors and software profiling guide

speculation by identifying this common-case subset, then determining and enforcing

the conditions permitting its use. Applications’ direct input into speculation may only

consist of “hints” which, if incorrect in practice, can adversely affect performance. If

11

no existing speculation mechanism can identify and exploit common case behavior,

the opportunity is lost.

Existing speculation mechanisms are designed to operate on particular classes of

conditions, in order to assure low-overhead data collection and efficient speculative

execution which permits recovery from misspeculation. Hardware-only mechanisms

such as branch and value predictors are self-contained and guided by data collected

without modifying the executable. Software-only mechanisms trigger selective recom-

pilation based upon profile results and correlating execution behavior with a high-level

program representation. Recently proposed hardware-assisted software speculation

mechanisms [28, 42] are more general-purpose, requiring less intricate knowledge of

execution behavior, but still act with no application assistance; it is on this class of

mechanism that my work builds.

General-purpose hardware-assisted software speculation requires an explicit inter-

face for expressing speculation’s scope and preconditions to the hardware and runtime

systems which implement it. Directly exposing hardware and/or runtime speculation

facilities in a high-level language is a bad idea, because it ties the application directly

to the limits of the particular hardware and runtime. But adding explicit speculation

constructs to high-level languages and their runtime interfaces in an implementation-

agnostic fashion is useful because they allow the programmer to explicitly define

common case behavior. Mainstream managed runtimes make these facilities possible

to implement efficiently, augmenting rather than potentially conflicting with exist-

ing speculation mechanisms. Rather than mapping speculation constructs directly to

hardware, a runtime can tailor the programmer-specified speculation opportunities

to the capabilities of the available hardware.

Explicit speculation’s primary function is to broaden the applicability of special-

ization. Specialization is an optimization in which code is transformed by assuming

particular input values [7]. When the values can be proven to be constant (or are

12

guaranteed by the programmer not to change), specialization is equivalent to partial

evaluation. Where values cannot be guaranteed constant, a specializer makes opti-

mistic assumptions about the values it expects to see and generates code using those

assumptions. In order to select assumptions, a specializer typically profiles executed

code paths and records values that it observes to be constant (or near constant)

during computation.

Speculation constructs make common case scenarios explicit in order to facilitate

compiler and runtime optimization. However, explicit speculation should be applied

reactively, as it is only worthwhile where existing techniques cannot already discover

and exploit these optimization opportunities. Among these techniques, automated

runtime specialization is an active research area, with several recent proposals that

exploit language semantics [40] and hardware support for atomic execution [28, 42].

This work is thus positioned as a complement to—or, in fact, as an enabler of—

automated specialization and compiler-supported speculation, by focusing on opti-

mization opportunities they miss.

2.3 Dynamic languages and managed runtimes

Over the past decade, dynamic languages such as Perl, Python and Ruby have become

a common workload. Dynamic language use has grown past traditional “scripting”

applications to encompass mainstream scientific and commercial development. Often,

users of these languages initially adopt them in order to glue components together

or perform ad hoc analyses. As users succeed with dynamic languages on small-scale

projects, the languages’ concise, pragmatic syntax, ease of use, extensibility and

embeddability encourage broader application. Dynamic languages’ spread is aided

by the many high-quality, community-developed libraries and frameworks available

and made practical by the availability of hardware which executes dynamic language

13

code quickly enough for many purposes.

The Perl, Python and Ruby languages, among others, were developed in concert

with their original and still most commonly used implementations—AST or bytecode

interpreters written in C. These dynamic languages differ from older dynamic lan-

guages such as Smalltalk and Lisp in that much of their standard libraries are also

implemented in C, rather than in the language itself. This design was borne out of

necessity—processing large amounts of data in an interpreted language is impractical.

Interpreted implementations of these languages remain dominant because they

have relatively low resource requirements and start up quickly. They are extremely

portable as they perform no native code generation and present a low barrier of entry

to people wishing to extend or modify the implementation. However, dynamic lan-

guages currently face challenges which cannot be met by these implementations. To

continue expanding their reach, dynamic languages must improve their performance

and safety on current and forthcoming hardware without sacrificing compatibility—

the loss of which can dissuade current users from keeping up with language and

runtime evolution.

Several alternative dynamic language runtimes have attempted to address the C-

based interpreters’ deficiencies. Figure 2.1 plots some representative runtimes along

axes of implementation complexity and execution speed.

Figure 2.1a represents the class of dynamic language-specific just-in-time (JIT)

compilers, which are currently the best-performing runtimes for their languages. Each

targets a specific dynamic language and directly generates native code. Some of these

compilers use novel techniques such as just-in-time specialization (Psyco [35]) and

trace compilation (TraceMonkey, LuaJIT [13]), while others apply more traditional

dynamic language optimization (V8 [5] resembles Self [18]). Many of them target

interactive applications, such as Web browsers and embedded devices, in which fast

startup, short compilation time and low memory usage for both the compiler and

14

ex
ec

ut
io

n
sp

ee
d

implementation complexity

CPython, MRI (Ruby)
Perl 5, Tcl, Lua, …

DLR languages: IronPython, …
Java languages: Jython, JRuby, …

Psyco (Python)
HiPE (Erlang), LuaJIT
V8, TraceMonkey (JavaScript)

PyPy
Parrot

JVM (Java)
CLR (C#, …)
Smalltalk, Lisp

(a)

(c)

(b)

Figure 2.1: Dynamic language implementation points. Arrows indicate the trend of
future development for each implementation class.

generated code are essential. As these compilers have generally grown out of existing

interpreted dynamic language runtimes–in fact, some fall back to interpretation for

faster startup or when the JIT cannot handle a situation—they retain C/C++-based

libraries. (Rubinius [31] is an exception; it includes a reimplementation of the Ruby

standard library written in Ruby itself.)

The box of Figure 2.1b contains PyPy and Parrot, two dynamic language “run-

time construction kits” currently under development. While these systems grew out

of the Python and Perl 6 communities, respectively, both intend to support execu-

tion of many different dynamic languages, though neither has yet produced a viable

replacement for its primary language’s traditional interpreter. Each includes much

more than a single runtime for the languages it supports—PyPy, for example, can

automatically generate a CPython-like interpreter, Psyco-like just-in-time compiler,

compilers emitting .NET or Java bytecode, or program analysis tools, all by trans-

forming a description of Python written in a restricted subset of Python itself. At

15

least in the case of PyPy, however, the cost of this flexibility is an extremely complex

and difficult-to-learn infrastructure.

Figure 2.1c includes some examples of dynamic language implementations built

on managed runtimes. Here, dynamic language code and its implementation exe-

cute on the same runtime, so dynamic optimization can span both domains. Dy-

namic language implementations can be written entirely in high-level languages such

as Java or C#, thereby leveraging the tremendous development effort invested in

robust, capable, high-performance Java and .NET managed runtimes, while remain-

ing relatively simple, understandable and “hackable”. This implementation strategy

preserves managed runtime advantages such as safety, seamless cross-language inter-

operability, debugging and rich tool support.

While the best managed runtime dynamic language implementations, such as

JRuby, outperform the classic dynamic language interpreters, they are not yet com-

petitive with the language-specific VMs, despite the underlying runtimes’ greater

sophistication. Managed runtimes are capable of much better performance when ex-

ecuting code written in a language designed specifically for them—a language whose

semantics match the runtime’s. In contrast, dynamic languages’ semantics differ from

typical managed runtime semantics for such basic operations as function invocation.

“Wrapping” runtime functionality with language-specific semantics is common in

managed runtime dynamic language implementations. Because of its global scope,

this wrapper code is difficult to optimize away.

In practice, most dynamic language code doesn’t exploit the full flexibility of its

language’s semantics. Existing managed runtime primitives can directly encode this

common case behavior, resulting in high performance execution. However, it is dif-

ficult or impossible to identify the subset of the program that can be so encoded

without executing it. Dynamic language implementations cannot therefore uncon-

ditionally generate fast code for the common case. In high-performance dynamic

16

language-specific runtimes, this lack of foreknowledge is remedied by sophisticated,

equally language-specific execution feedback mechanisms.

Managed runtime facilities for dynamic language implementation are actively

being developed, currently emphasizing rudimentary support for common dynamic

primitives. For example, the Microsoft Common Language Runtime (CLR) includes

a few dynamic language-friendly primitives such as lightweight code generation, a

method “hot-swap” capability and a “delegate” construct akin to a type-safe function

pointer. A Dynamic Language Runtime (DLR) layer builds on the CLR, providing

an additional, dynamic language-specific type system which overlays yet does not

fully interoperate with the CLR type system. The Da Vinci Machine project for

Java provides similar primitives, including invokedynamic, a flexible method dispatch

mechanism which maps well to the needs of explicit speculation, as I discuss in Sec-

tion 6.2. In each case, closing the performance gap remains largely the responsibility

of individual dynamic language implementers.

17

Chapter 3

Explicit speculation

This chapter discusses the basis of explicit speculation independent of a particular

application. Section 3.1 describes the means by which software and hardware inter-

act and a simple method for selecting atomic region boundaries. In Section 3.2, I

characterize aspects of explicit speculation from the standpoint of a user developing

an optimization.

3.1 Atomic regions and runtime interaction

Unlike previous work which uses profile feedback to determine regions for specula-

tion [28], I adopt a simpler region selection approach which does not require pro-

file feedback. During initial code generation, potential region boundaries are placed

surrounding function calls and loop iterations. At runtime, region execution is ag-

gregated through flat nesting, in which a hardware counter is incremented at the

beginning of a region and decremented at its end. Speculative state is committed

when the counter returns to zero. Because the individual nested regions are not inde-

pendently identified in hardware, an abort rolls back the changes made by all regions

and jumps to the abort PC of the outermost region.

Näıvely applying this method of region selection, a single region would initially

surround the entire program’s execution. This is clearly impractical, as for all but

the most trivial programs, executing this region would exhaust the hardware’s ability

to buffer speculative state. Execution with explicit speculation thus typically begins

18

f: …

g(x)

g: …

h(y)

h: …

…

...

R1

R2

overflow

Recover

f: …

g(x)

g: …

h(y)

h: …

…

...

R2

Nonspeculative

I/O GC

Recover

speculative

(a)

(b) (c) (d)

Figure 3.1: Basic speculative region aggregation and abort behavior.

19

with an aborted attempt to speculatively execute a program-sized region. The run-

time feedback generated by this and other capacity aborts are then used to adjust

nesting behavior.

Consider the example Python execution of Figure 3.1a. On the left, speculative

execution begins with region R1, as the function f invokes the function g. g invokes h

in turn, beginning the nested region R2. While R2 completes successfully, R1 overflows

the storage available for speculative state in the remainder of g. The overflow triggers

a capacity abort in R1, which reverts R2’s speculative data along with its own.

The recovery process triggered by R1’s abort varies depending on the abort reason

read from a hardware register akin to Rock’s checkpoint status (cps) register [9].

On a capacity abort, the outermost aborting region (R1 in this case) is disabled,

its entry replaced by an unconditional branch to the corresponding nonspeculative

version. However, this replacement does not affect regions nested inside that region,

as shown on the right side of Figure 3.1a. For the current and subsequent executions,

R2 continues to execute speculatively. Over the first few executions of a piece of

code, the attempted atomic region nesting thus “shrinks to fit” the capabilities of the

hardware.

In general, a region abort may be handled in one of three ways: re-executing the

speculative region, executing the corresponding nonspeculative version once, or dis-

abling the region permanently. The runtime must keep track of re-execution attempts

as the region may repeatedly abort, impeding forward progress. Either of the latter

two options guarantees forward progress; the recovery code chooses to permanently

disable the region if subsequent speculative executions are also likely to fail.

Figure 3.1b depicts two successful speculative executions of a loop body, consist-

ing of an atomic region containing two nested regions. If the outer region were to

perform I/O which cannot be buffered within the speculative region, the recovery

code permanently disables the region, leaving the nested regions intact (Figure 3.1c).

20

Aborts from interrupts, such as those triggered by garbage collection pauses or op-

erating system context switches, do not permanently disable the region as it may

execute successfully in future, such as in the next iteration of the loop (Figure 3.1d).

The final abort reasons to address are explicit and conflict aborts. Both are

typically the result of an assumption invalidation. Failed assertions within the atomic

region trigger explicit aborts; conflict aborts are generated by conflicting memory

accesses from other threads. In these cases, depending on the frequency of observed

aborts and the assumption being invalidated, the runtime may choose to disable the

speculative region, generate a replacement region less likely to abort, or retry the

region.

3.2 Implementing speculative optimizations

I have previously characterized the components of explicit speculation from the stand-

point of the system implementing them. This section examines explicit speculation

from the perspective of a user attempting to solve a performance problem, by explor-

ing the decisions the user makes in the process of writing an optimization.

3.2.1 Characterizing the common case

Before generating code that exploits common case behavior, the user must determine

what the common case is. Explicit speculative code is analogous to a cache or binding

for the common case. Efficiently embedding the common case reduces per-execution

lookup overhead and improves performance.

A common case value to be used by speculative code, or even its data type, may

not be statically available. While explicit speculation offers performance benefits

even if the common case is sometimes misidentified, it may be advantageous to wait

until the common case can be more reliably identified before generating speculative

21

code. It is also important not to push common case characterization too early at the

expense of implementation complexity—it may be tempting to build a static analysis

infrastructure in order to compute the common case from the source code when a

simple runtime evaluation would produce the same results with much less effort.

The common case may be determined in any of several ways:

Static speculation. In the simplest case, the common case is available at the time

explicit speculative code is first written or generated. Speculative operations and

data can be referenced directly.

Runtime and partial evaluation. When the common case is not easily accessible

during initial compilation, it can be determined at runtime, perhaps after the non-

speculative code has been loaded into memory, after program initialization or at a

steady state during execution. Common case behavior can be computed by partially

evaluating the nonspeculative code in its runtime context. This technique works well

when the common case is not expected to change over a substantial fraction of the

program’s runtime.

This marks a shift from declarative to imperative specification of the common

case. Instead of generating code which populates a cache of common case values at

runtime, the values can be stored as the common case code is generated, and simply

referenced by that code.

Execution feedback and instrumentation. Characterizing common case be-

havior may require observation of the program over time. To accumulate execution

feedback, any of the existing techniques developed for dynamic optimization systems

may be applied to the nonspeculative variant of the code; often, the managed runtime

may already be collecting the necessary information, such as path profiles, though it

may not be able to expose this information to the managed code.

22

Alternately, and most usefully when explicit speculative code can support more

than one common case, profiling can be inserted as an inline assumption in the specu-

lative variant. The assumption is invalidated when the speculative code encounters a

situation it cannot handle. The recovery code could then reconstruct the unhandled

common case observed and produce a replacement speculative region which is handle

the newly observed case as well as previously observed ones.

However, by the time the recovery code has been triggered by the invalidation, the

atomic region’s outstanding speculative state has rolled back. Little remains of the

context where the abort occurred—just the abort reason and perhaps the address of

the offending instruction. Thus, while recovery code may track speculation failures

that occur on region aborts, it isn’t necessarily able to identify which assumption

failed.

For assumptions about external, mostly unchanging data, the recovery code can

simply check the assumptions in turn. If the assumption depends on data computed

inside the region, such as a type of an expression, the speculative region was unable

to proceed because it saw a scenario it hasn’t been specialized to handle, and which

isn’t immediately visible to the recovery code. The soon-to-be-aborted region needs

to be able to communicate with the recovery code about to execute. One or more of

the following techniques could be used:

• A profiling version of nonspeculative code—or the nonspeculative code itself—

could evaluate the assumptions under which the corresponding speculative re-

gion failed.

• Speculative regions could be organized such that they can commit even when

particular assumptions fail, by placing all the assumption checks at the begin-

ning of the atomic hardware region. Since assumption checks do not modify

data, it is safe to commit the region regardless of the value of these checks.

23

This technique cannot be used in general because it is only applicable to the

outermost hardware atomic region.

• A hardware mechanism could be designed to permit a limited amount of infor-

mation to escape, or be exported, from an aborted atomic region. This could

include a subset of memory writes, or or more registers could be explicitly ex-

cluded from hardware checkpointing and rollback, thus making them usable for

profiling information. (If the address of an explicit abort instruction is accessi-

ble in the abort handler, it could itself act as a source of profile information.)

For extremely frequently executed regions, it may be advantageous for the man-

aged runtime to assist with aggregating observed abort information rather than del-

egating it to high-level code, only invoking code generation after a certain amount of

profile data has accumulated.

3.2.2 Writing speculative code

A speculative code region may perform one or more of the following operations, often

in order. The following section discusses transition code, which performs speculative-

nonspeculative conversion, in more detail; assumption checks are described in Sec-

tion 3.2.5.

• Conversion of data from a nonspeculative to speculative representation before

it is read within the region.

• Verification of speculation assumptions, triggering an explicit or implicit abort

if an assumption is invalid.

• Computation with speculative as well as nonspeculative code and data struc-

tures.

24

• Conversation of data from a speculative to a nonspeculative representation after

it is written within the region.

The overhead of transition code and/or assumption checking code can negate the

performance benefit of any “real work” performed in the speculative region. The

user should therefore ensure that transition and assumption checking code is efficient

and tailored to the specific dynamic instance of that region being executed. For

example, only one path through a region may read from a particular speculative data

structure; only executions on that path should convert that data structure from its

nonspeculative version. Similarly, it may not be necessary to convert an entire data

structure to its speculative version if only parts of that structure are referenced.

3.2.3 Managing speculative data

Current and near-future atomic region execution hardware is primarily limited by its

capacity to buffer speculative data [11]. This limitation affects explicit speculation

in two ways.

First, the memory footprint and locality of speculatively optimized code directly

affect its ability to be used. In most cases, speculative versions of data structures

are smaller than their nonspeculative counterparts. However, transition code touches

nonspeculative data in order to convert it, and assumption checking code may also

expand the region’s footprint. To maintain consistency between speculative and non-

speculative versions of data structures, enough of the nonspeculative data structure

to guarantee exclusive access must be “touched” (read from), such that any parallel

nonspeculative write causes the atomic region to abort.

Second, the explicit speculation runtime must consider nested atomic regions in

code, aggregated into single hardware regions, which overflow the hardware’s ca-

pacity. Not only can too-large regions that always encounter capacity limitations

25

be removed, but adjacent too-small regions can be merged, potentially eliminating

redundant assumption checks and transition code.

Footprint tuning provides an added benefit in trimming the number of potential

combinations of successfully executed speculative regions for which fallback code is

generated. Trimming these fallback paths reduces the overall code size overhead of

explicit speculation.

A useful optimization, in some cases, is to store the speculative and nonspeculative

versions of a particular item in the same object. This object would expose both

a nonspeculative and speculative interface, the latter invoked only from within an

atomic region.

Optimizations implemented with explicit speculation can be classified according

to their use of speculative data:

No speculative data. These optimizations are the easiest to write and are trivial

to aggregate.

Speculative data inside hardware region. Transition code produces specula-

tive data for use within the region and/or nonspeculative data for use after the region

commits. Other hardware regions wishing to use the same speculative data must in-

clude equivalent transition code. To eliminate allocation within a region, speculative

storage may be shared between dynamic instances of a region. In this case, the exist-

ing speculative data is assumed to be suspect and never read before it is overwritten.

Speculative data spanning hardware regions. Speculative representations may

persist after a region of explicit speculation commits its state. The intervening non-

speculative code cooperates to ensure speculative representations remain valid. De-

pending on the data’s expected access pattern, it may either update the speculative

version of data with its nonspeculative equivalent, or convert the speculative data

26

to and from a nonspeculative version. In the former case, the nonspeculative code

may use hardware atomic region functionality to reduce synchronization overhead

necessary to make atomic updates to the speculative and nonspeculative versions.

Code executing inside a region of explicit speculation may not have been written

or generated with any awareness of speculative data or its scope. If speculative data

is passed to this code, it may retain a reference to this data and inadvertently “leak”

speculative representations outside the executing atomic region. Thus, care must be

taken to limit the exposure of references to speculative data representations. In the

context of a dynamic language, this means that speculative representations may be

used in invoking other dynamic language user code or known-safe dynamic language

library code, but not other code, such as that in the Java standard library, unless it

has been analyzed to ensure it does not retain the data passed to it.

3.2.4 Exceptions and control flow

Exceptions are both a part of the mechanism of explicit speculation (as exposed

to the managed runtime) as well as a feature used by user code. Left unchecked,

an exception in user code may cause control to prematurely exit an atomic region,

breaking the region nesting discipline discussed in Section 3.1. Consider the following

pseudocode (the nonspeculative alternatives have been removed for simplicity’s sake):

1 begin atomic region(); // R1
2 try {
3 if (...) {
4 begin atomic region(); // R2
5 ...
6 if (...) {
7 begin atomic region(); // R3
8 throw new SomeException(...);
9 end atomic region(); // R3 (never executed if exception thrown)

10 }
11 end atomic region(); // R2 (never executed if exception thrown)
12 }

27

13 } catch (SomeException e) { ... }
14 end atomic region(); // R1 (ends R3 if exception thrown)

In the case where the code throws SomeException, the end atomic region invoca-

tions for regions R2 and R3 are never executed. R1’s end atomic region instead closes

R3. Since the two “leaked” regions never end, atomic region execution continues with-

out bound, which eventually results in a capacity or conflict abort. This behavior

does result in correct (if inefficient) execution, though if the code being executed does

truly use exceptions only in exceptional conditions, infrequent re-execution overhead

may be acceptable.

Much real-world code uses exceptions in the course of normal execution, however.

For example, neither Java nor Python includes a goto operation. Both instead pro-

vide exception handling mechanisms which may be used for their control flow effects

in non-exceptional cases. An example is a Python idiom for testing whether a name

is defined:

1 try:
2 some name
3 except NameError:
4 # name is undefined
5 else:
6 # name is defined

If some name is not defined, the except block executes, otherwise execution falls

through to the exception handler’s else clause.

To efficiently support exceptions used for control flow, a Java virtual machine

can convert an exception throw/catch pair into a goto if it is able to analyze the

exception block’s scope. Execution with explicit speculation should ideally maintain

this optimization and be able to support local exceptions within a hardware atomic

region.

Explicit speculation thus supports the following roles for exceptions:

28

Nonspeculative fallback code. A special exception class (SpeculationFailure in

my implementation) marks an exception handler as containing fallback code to be

executed on an atomic region abort. An explicit abort, as on a failed inline assump-

tion, may also map to a thrown exception.

Efficient assumption checking. A null pointer dereference generates an excep-

tion in Java. Because null pointer checks must in principle occur on every method

invocation, Java virtual machines perform them efficiently, usually by trapping the

hardware exception generated on a null pointer dereference. This behavior can be

exploited to implement an efficient check for some assumptions, where a null pointer

dereference occurs on an assumption invalidation. In some atomic region implemen-

tations, invoking a hardware exception handler from within a region would abort

the region; otherwise, the exception handler for NullPointerException would trigger an

explicit abort. ClassCastException may be intercepted similarly when a method is spe-

cialized for a certain data type. By exposing existing processor features, arithmetic

exceptions (such as overflow) could be similarly trapped.

User exceptions. To support the common case in which a try block is contained

entirely within a hardware atomic region, the regions nested inside the handler can be

ended before the exception is thrown. The example at the beginning of this section

would thus become:

1 begin atomic region(); // R1
2 try {
3 if (...) {
4 begin atomic region(); // R2
5 ...
6 if (...) {
7 begin atomic region(); // R3
8 /∗ R3 and R2 transition code (if any) ∗/
9 end nested region or abort(); // R3

10 end nested region or abort(); // R2

29

11 throw new SomeException(...);
12 ...
13 } catch (SomeException e) { ... }
14 end atomic region(); // R1

Before throwing SomeException the code ends R2 and R3. However, given the

exception object may reference speculative data, if R1 is not being executed in hard-

ware, ending R2 or R3 will cause a hardware atomic region commit. Therefore I

define end nested region or abort, which ends a nested atomic region (decrementing

the nesting counter) unless the current region is outermost, in which case it aborts

instead of committing in hardware, to avoid potential leakage of speculative state.

While the need to perform one or more region ends slightly increases the overhead of

throwing an exception, it does not affect the Java virtual machine’s ability to optimize

exception handling.

3.2.5 Assumption checks

An atomic region must never commit its speculative state if any of its speculation

assumptions are invalid. The runtime is responsible for aborting and/or invalidating

the regions which share a invalidated assumption before the assumption-invalidating

action takes effect. Currently, assumption checks must be embedded into specula-

tive and/or nonspeculative code by a user of explicit speculation. An assumption

registry stores a mapping between assumptions and the corresponding regions to

invalidate.

Assumption checks may take one of three forms: implicit checks within an

atomic region (discussed in Section 3.2.4), which rely on managed runtime excep-

tions, potentially triggered by corresponding hardware exceptions, generated by ex-

isting runtime behavior; explicit checks or assertions within an atomic region, which

verify aspects of, or consistency between, speculative and nonspeculative data; and

assumption traps, which precede assumption-invalidating actions in both nonspec-

30

ulative and speculative execution.

Because they occur within a speculative atomic region, implicit and explicit as-

sumption checks may both be categorized as inline checks. Inline assumption checks

are the only choice for data whose scope does not escape a speculative atomic region.

Inline assumption checks and assumption traps represent opposite sides of an

efficiency tradeoff. Inline checks add overhead to the common case path; assumption

traps also impact nonspeculative execution. However, assumption traps are usually

more efficient because they are seldom executed in the common case.

An assumption trap consists of the following actions, which are inserted before

the action which invalidates the assumption.

1. Abort the current region, if any.

2. Retrieve the set of regions R corresponding to the to-be-invalidated assumption

in the assumption registry.

3. Disable each region in R, typically by replacing the beginning of the region’s

code with an unconditional branch to the nonspeculative version.

4. Write to a memory location in the speculative footprint of each region in R, so

that if a region is currently executing, a conflict abort occurs before it becomes

invalid. Even if the recovery code attempts to re-execute the region, it will have

already been disabled by step 3 and the nonspeculative version will execute

instead.

This location may form part of a data structure which is the target of the

assumption, or simply be a sentinel location read by the region to identify the

assumption or region (as used for lock-transaction coexistence in my work with

PyPy [37]).

5. Perform the assumption-invalidating action.

31

6. (Optional) Tag the invalidated speculative regions for regeneration.

Note that assumption traps may be encountered within a speculative atomic re-

gion. In this case, it is most efficient to immediately abort the region as in step 1

above, as the assumption trap will be encountered at the corresponding location in

the fallback code (unless the assumption becomes valid in the interim).

Assumption traps and implicit checks are simple to implement and have little

or no overhead in the common case. By comparison, explicit checks, while used

exclusively in compiler-based atomic region speculation systems (e.g., [28]), must be

carefully applied to explicit speculation.

Explicit assumption checks include those for which a invalidation involves a con-

flict or explicit abort. A common form of explicit check is established by transition

code, which by reading from nonspeculative data protects against the speculative

version becoming invalid if its nonspeculative counterpart is written by another con-

current speculative region or nonspeculative thread of execution. However, this does

not protect against the nonspeculative data being written inside the atomic region

or a nested region. It is thus necessary to analyze the scope of references to the

nonspeculative data by any code reachable from the region.

Similarly, analysis may permit elimination of redundant explicit checks of the

same assumption within an atomic region. These checks may be collapsed to a single

check if the code within the region can be proven not to invalidate the assumption

itself.

When designing conflict-based explicit checks, it is important to ensure that data

is touched in an order such that the conflict occurs at the same time the data becomes

visible, to avoid race conditions with atomic regions beginning or ending at the same

time as the modification. Even in otherwise nonspeculative code, a speculative region

may be used to ensure atomic modification of the data structure.

As they must consider issues of memory ordering outside and scope within (po-

32

tentially nested) atomic regions, explicit checks are difficult to reconcile with the

high-level language orientation of explicit speculation. It may be too much to ask the

potential general audience for explicit speculation to design correct explicit checks;

they could instead be reserved as a type of system programming interface, or exposed

in a limited fashion with compiler support for validation.

In cases where recovery code (as opposed to an assumption trap) disables one

or more atomic regions, this disabling may only be treated as a performance opti-

mization. If a region maps to more than one explicit assumption, the recovery code

can test each assumption in turn, then disable the region and related regions if the

assumption is expected to fail on subsequent executions. This is typically the case if

the assumption was not established by transition code. If correctness were to depend

on a conflict-generated assumption causing regions to be disabled, a race condition

would exist between the time the abort occurred and the time the assumption was

re-tested.

33

Chapter 4

Explicit speculation on managed
runtimes

In this chapter, I discuss applying explicit speculation to a managed runtime, the

HotSpot Java virtual machine (JVM), and Jython, a JVM-based dynamic language

implementation. Section 4.1 explores the performance and ease of implementation for

each of the six Jython optimizations I developed with explicit speculation, given “per-

fect” region selection. Section 4.2 then explores the atomic region usage of Jython

code and the performance limitations which result from a simple atomic region selec-

tion mechanism.

4.1 Speculative optimizations in Jython

The Jython compiler processes Python source code into an AST and emits Java

bytecode from that AST, with one class per Python source file. Most of Jython’s

functionality is implemented in Java library routines rather than in the emitted byte-

code. Explicit speculation opportunities thus exist at the Java level in the Jython

standard library, as well as in the compiler itself.

Jython application execution is dominated by Java code that implements Python’s

dynamic lookup and dispatch logic for every function or invocation, variable refer-

ence or access. This code’s performance under Jython is approximately that of the

equivalent code in CPython (Figure 4.1).

I evaluated three Python benchmarks, pystone, richards and pyparsing, on

versions of Jython and the HotSpot JVM extended with support for explicit spec-

34

Normalized microbenchmark runtime (1.0 = CPython 2.5.1)

call function

call method of new-style class

get item from dictionary

raise builtin exception

untriggered exception block

0.0 0.5 1.0 1.5 2.0 2.5

Figure 4.1: Jython and CPython performance on a subset of the PyPy microbench-
mark suite [1].

ulation. The first two of these benchmarks are commonly used to compare Python

implementations: pystone [2] consists of integer array computation written in a pro-

cedural style; richards [47] is an object-oriented simulation of an operating system.

Both are straightforwardly written but non-idiomatic Python, ported from Ada and

Java, respectively; I expected them to uniformly exhibit common case behavior. In

contrast, pyparsing [25] uses Python-specific features to implement a domain-specific

language for recursive descent parsers; I chose it as an example of code that is both

potentially performance-critical and exploits the language’s semantics.

With explicit speculation, Jython can optimistically substitute the equivalent na-

tive Java operations. The majority of the optimizations I implemented follow this

pattern. For example, I addressed mostly-unnecessary synchronization in lookup (in-

volving the use of the Java HashMap data structure; Section 4.1.2) and eliminated

1-2 hash table lookups from each global variable access (Section 4.1.3). The results

improved Jython execution of pystone from 40% faster to over twice the speed of

CPython; richards went from 25% slower to 3% faster. The effects on pyparsing

were considerably less, even after these optimizations.

Next, I implemented two optimizations which addressed dominant aspects of

pyparsing execution: exception handling and regular expression evaluation (Sec-

35

S
pe

ed
up

 v
s.

 C
P

yt
ho

n
2.

4.
3

0.125

0.25

0.5

1

2

4

8
pyparsing pystone richards

variants
Jython
+exceptions
+HashMap
+cache_globals
+Joni
+unframe_locals
+direct_dispatch
python2.6
psyco

Figure 4.2: Jython and Psyco speedups over CPython on three Python benchmarks,
given unlimited buffering capacity for speculative state.

tions 4.1.4 and 4.1.5). Together, these optimizations improve pyparsing’s perfor-

mance by over 600%.

Finally, two more advanced optimizations apply to all the benchmarks, reducing

the overhead of Python local variable access, function invocation and object self-

reference.

4.1.1 Experimental method

Because the atomic regions in the benchmarks I evaluated divide cleanly into “always

abort” and “never abort” groups, I can approximate the steady state performance—

i.e., performance after no more invalidations occur—of a single-threaded workload on

a HTM-enabled JVM with a real machine without HTM, akin to measuring timings

after JIT warmup.

The full simulated execution process I use to converge on a steady state execution

is as follows. I employed the Pin dynamic instrumentation system [23] to collect

36

instruction counts, memory footprint and nesting information for executed atomic

regions, the results of which appear in Section 4.2.

1. Run the entire benchmark in Pin with atomic regions surrounding nonspecula-

tive execution.

2. Merge those regions whose maximum observed footprints are smaller than 2 KB.

Merging small regions eliminates overhead caused by redundant transition and

assumption verification code.

3. Execute the remaining speculative regions. As these real-machine experiments

provide no capability to roll back execution, I configured the JVM exception

handlers associated with atomic regions to abort the process if triggered, record-

ing the identifier of the region being aborted. With an actual HTM, the ex-

ception handlers would execute recovery code instead; subsequent executions

would take the nonspeculative fallback path.

4. Disable the region aborted by the exception handler.

5. Repeat steps 2, 3 and 4 until execution completes successfully.

6. Time the execution. The inactive recovery and nonspeculative code remains in

the running system, such that any performance loss attributable to code size

growth should be accounted for by these results.

7. (Optionally) Measure region footprints for speculative execution with Pin. Dis-

able those regions whose maximum observed footprints were larger than 16, 32

and 64 KB, approximating typical first level caches, then reexecute to collect

timing data.

Figure 4.2 plots Jython performance with and without speculative optimizations

relative to interpreted execution with CPython 2.4.3. As the most commonly used

37

Python implementation, CPython’s performance is a logical baseline for Python users.

The leftmost bar in each group plots the performance of unmodified Jython; each

subsequent bar to the right includes the effect of an additional optimization. The

rightmost two bars of each group represent CPython 2.6 and CPython 2.6 with the

Psyco 1.6 dynamic specializer, respectively. Note that Psyco is commonly bench-

marked with pystone and richards, such that the speedups obtained with these

two programs are atypically large. pyparsing’s behavior is more representative of

Python programs in general.

Explicit speculation’s effectiveness is largely a function of its ability to generate

atomic regions capable of being executed in hardware. The results of Figure 4.2

approximate the performance of explicit speculative Jython on hardware with un-

bounded, zero-overhead storage for speculative data. As discussed in Section 3.2.3,

while the assumption of zero overhead is realistic, the capacities of present-day atomic

region execution hardware are considerably more limited. Section 4.2 includes results

with finite speculative buffering capacities.

The following sections discuss each of these optimizations in turn.

4.1.2 Dictionary (HashMap) synchronization

The Python dictionary data structure provides an unordered mapping between keys

and values. Dictionaries are frequently accessed directly by user code and as part

of the implementation of the Python language. In particular, dictionaries are the

default storage mechanism for object attributes (e.g., instance variables) and the

basis of Python namespaces in which both code and global data reside. Fast dictio-

nary lookups are essential to Python performance, as nearly every Python function

call, method invocation and global variable reference involves one or more dictionary

lookups.

Both CPython [21] and Jython’s dictionary implementations include specializa-

38

ConcurrentHashMap
HashMap

pystone richards pyparsing
0.8

1.0

1.2

1.4

S
p

ee
d

u
p

 v
s.

 s
yn

ch
ro

n
iz

ed
 H

as
h

M
ap

Figure 4.3: Relaxing correctness and synchronization constraints on Python dictio-
naries.

tions tailored to particular use cases. For example, the keys of object dictionar-

ies (object. dict) are nearly always strings representing attribute names. Jython’s

PyStringMap optimizes string-keyed lookup by requiring that the keys be interned

when stored, so a string hash computation need not be performed during lookup,

and permitting Java strings to be directly used as keys, rather than being wrapped

in an adapter implementing Python string semantics.

Python dictionary operations must be performed atomically. Jython enforces

this constraint by using a ConcurrentHashMap [22], a hash table-based data struc-

ture designed to permit concurrent multithreaded access, for both general-purpose

PyDictionary and special-purpose PyStringMap dictionaries.

Previous Jython versions wrapped a simple HashMap object with Java synchro-

nization. While replacing the synchronized HashMap with a ConcurrentHashMap im-

proved performance overall, the implementation has two drawbacks. First, even on

a single-core machine it is slower: on pystone, the näıve single-lock model performs

39

better (Figure 4.3). Second and more seriously, ConcurrentHashMap does not conform

to Python semantics; in particular, while a Python dictionary’s contents remain un-

modified, repeated attempts to iterate through it must return key-value pairs in the

same order. With ConcurrentHashMap, the iteration order may change under some

access patterns even though the dictionary contents do not.

By using hardware atomic regions for speculative lock elision (SLE) [32], uncon-

tended access to a synchronized HashMap can perform as well as the unsynchronized

version. Thus, I can productively replace the various Jython dictionary implemen-

tations with unsynchronized versions and wrap their invocations in atomic regions.

Synchronization overhead can be eliminated entirely when accesses are subsumed by

an outer atomic region, as will usually be the case.

4.1.3 Global caching

I next chose to address the overhead associated with accessing Python module-level

globals (typically defined at the top level of a source file) and “builtins” (basic type

names, constants, functions and exceptions such as int and None, which would be

keywords in many other languages). While local variable references are resolved at

compilation time (typically as an array access), global and builtin name references

are looked up in a dictionary at runtime [45].1

Jython compiles each module (usually corresponding to a source file) to a Java

class. It converts the Python code,

1 def f():
2 g(x)

representing an invocation of a module function g from another function f with a

module global variable x as a parameter, into Java as:

1 public PyObject f$1(PyFrame frame) {
1Since globals shadow builtins, a builtin resolution involves one unsuccessful (global) and one

successful (builtin) hash probe.

40

2 frame.getglobal("g"). call (frame.getglobal("x"));
3 }

While the externally visible Python namespace representation must remain a dic-

tionary for compatibility, its internal representation can be speculatively optimized

for performance by exploiting the characteristic access pattern of dictionaries used for

instance variable and namespace storage. Early in their lifetime, these dictionaries

are populated with a set of name-value pairs. Thereafter, the values may change but

the set of names is unlikely to do so.

To take advantage of this behavior, I modified the Jython compiler to keep track

of global and builtin references as they are compiled, emit corresponding Java variable

declarations, and cache the global and builtin values in these static variables during

module loading.2 With this optimization, the code becomes:

1 public PyObject gg, gx;
2 public PyObject f$1(PyFrame frame) {
3 try {
4 begin atomic region();
5 g$g. call (g$x);
6 end atomic region();
7 } catch (SpeculationFailure e) {
8 frame.getglobal("g"). call (frame.getglobal("x"));
9 }

10 }

I additionally subclass PyStringMap with a version that redirects reads and writes

to the module dictionary’s g and x keys to the corresponding static fields. This does

slow down access through this dictionary by unspecialized code (specialized code uses

the fields directly), but since such accesses are both infrequent and dominated by a

hash table lookup, this is a reasonable tradeoff.

Attempts to delete x have no direct Java analog. I map the semantics of Python

2Note that the variables are instance variables rather than static variables. Jython compiles each
Python module to a Java class. A module may be imported in different contexts, each with its own
set of globals and builtins. Jython represents each context by a different instantiation of the module
object.

41

deletion to the Java null value to represent a deleted variable. I then preserve the

Python semantics of raising an exception when a deleted value is referenced, by ensure

that an assumption check takes place before any access to x. In some cases, this is a

truly implicit check involving no extra code: dereferencing a null g$g would generate

a NullPointerException. In others, an explicit check must be included: for example, g’s

call implementation converts a Java null into a Python None object, which would

not trigger an exception when dereferenced. This behavior was further discussed in

Section 3.2.4.

4.1.4 Eliminating exception metadata

The pyparsing benchmark implements a parser framework which uses exceptions ex-

tensively for backtracking. While parsing a 7416-byte Verilog file, pyparsing raises

90 different ParseExceptions a total of 11691 times. Not only are raising and trap-

ping of Python exceptions very expensive in Jython—Python-specific exception ob-

jects must be constructed, and Python-specific exception matching and decoding

performed—but in my original implementation of explicit speculation in Java [38]

any Java exception raised in an atomic region was converted into an explicit region

abort. To support speculative optimization with exceptions used for non-exceptional

control flow, a (Java) exception should be able to be thrown within an atomic region.

Only throwing of specific exception types should cause the region to explicitly abort.

The most effective Jython optimization I evaluated on pyparsing was eliminating

Java stack collection during a Python exception throw. This process, implemented in

the JVM by the native method java.lang.Throwable.fillInStackTrace, can defeat runtime

optimizations because it must reconstruct ordinarily unneeded execution state. The

exception’s Java stack trace is only accessed when Java code attempts to introspect

a Python exception, which typically only occurs during debugging; it is an ideal

candidate for speculative removal. Removing unused Python exception state and its

42

extraction code also sped up execution, though much less dramatically.

Given support for exceptions inside atomic regions as described in Section 3.2.4,

this optimization was relatively simple to implement. Inside speculative regions, I

modified explicit raises of Python-specific exceptions to instead use a PyException sub-

class with an empty fillInStackTrace method (bypassing the expensive native method

in Throwable) and methods which include assumption traps triggering explicit aborts

on any metadata access from Python or Java. Jython-generated exception handlers,

excepting those I added to implement assumption checks for explicit speculation, al-

ways catch all exceptions in order to bridge the Python and Java exception models.

A Java class is not created for each Python exception class; the Python exception

class is stored in the type instance variable of every PyException, so the Python-side

exception matching behavior does not need to be modified.

A logical next step in Jython exception optimization would be the speculative

elimination of Python-specific exception raising and matching machinery entirely

when the control flow occurs entirely within an atomic region, though an experi-

ment in which I eliminated this code in all cases sped up pyparsing on Jython by

only 1–2%, so I did not pursue this optimization opportunity further.

4.1.5 Joni

pyparsing performs many steps of parsing with regular expression evaluation, but

uses few regular expression features. The Joni optimization speculatively replaces

Jython’s sre regular expression implementation with Joni [26], a port of the C-based

Oniguruma library [20] developed for use with JRuby (another Java dynamic language

implementation). Unlike sre, Joni operates on byte strings (with its own Unicode-

aware encoding handling) and is optimized for use with HotSpot. Python strings still

need to be converted when entering Joni, but Joni’s more compact target representa-

tion and more efficient implementation combine to offer a significant improvement. In

43

its current form, Joni only supports a subset of sre’s capabilities. I placed assumption

traps in the sre-to-Joni adapter which will trigger the a rollback and reversion to the

fallback sre code if an unsupported operation is requested on a regular expression or

match object. More efficient VM-level storage of strings [49] could eliminate the need

for string conversion entirely, adding to this benefit.

This optimization is a simple example of adapting a more efficient common case

interface subset while retaining the general functionality. The primary consideration

here is determining the expected lifetime of the speculative representations. In this

case, with the regular expression match object, the lifetime is relatively short, the

speculative and nonspeculative representations can be independent. The compiled

regular expressions last nearly the lifetime of the program, such that both Joni and

sre representations are maintained and used as appropriate.

4.1.6 Direct local variable access (unframe locals)

Jython local variable and parameter lookup is faster than global variable lookup, but

neither maps directly to Java local variables. For example, the following code:

1 def f():
2 x = 5
3 return x

is compiled by Jython as:

1 public PyObject f$1(PyFrame pyframe) {
2 pyframe.setlocal(0, 1);
3 return pyframe.getlocal(0);
4 }
5 static final PyInteger 1 = Py.newInteger(5);

The PyFrame object uses an array to represent the method’s local variables; in

this case, x maps to index 0 in the array.3

3The array, or fastlocals representation, in which local variables are accessed by index rather
than by name, is shared by CPython. In a small percentage of cases, such as at the top level of a
module where the local and global namespaces are identical, local variables are stored in a dictionary
instead.

44

In the common case, an explicit frame representation is unnecessary. The common

case is already being computed statically by Jython, as evidenced by its use of an

index rather than a name to look up x. With explicit speculation, the code above

becomes:

1 public PyObject f$1(PyFrame pyframe) {
2 try {
3 begin atomic region();
4 PyObject x = 1;
5 end atomic region();
6 return x;
7 } catch (SpeculationFailure e) {
8 pyframe.setlocal(0, 1);
9 return pyframe.getlocal(0);

10 }
11 }
12 static final PyInteger 1 = Py.newInteger(5);

If the entire method body does not fit in a single hardware atomic region, tran-

sition code must copy the Java local variables back into the PyFrame’s f fastlocals

array for the surrounding nonspeculative code. An assertion is inserted in the imple-

mentations of locals() (which returns the local variables and parameters as a Python

dictionary), or if an explicit representation of the frame is requested, such as during

debugging or tracing.

4.1.7 Direct dispatch

A module is imported, or loaded into Jython in several steps. The module’s source

code is first parsed into a Python abstract syntax tree (AST), from which a Java class

is generated. Jython then constructs an instance of the class, thereby evaluating the

Python code at the top level of the module and populating runtime data structures

with information about the module.

During import, Jython binds many of the module’s names, such as those that

reference variables, functions and other modules. In most cases, these names retain

45

Method Time
PyTableCode.call(PyFrame,PyObject) 33%
PyBaseCode.call(PyObject[],String[],PyObject,PyObject[],PyObject) 20%
pyparsing$py.call function(int,PyFrame) 16%
PyBaseCode.call(PyObject,PyObject[],String[],PyObject,PyObject[],PyObject) 4%
PyObject. call (PyObject,PyObject) 1%
PyObject. call (PyObject,PyObject,PyObject) 1%
PyObject. call (PyObject,PyObject,PyObject,PyObject) 1%

Table 4.1: pyparsing dispatch overhead without direct dispatch. Methods occupying
less than 1% of runtime are omitted.

their bindings for the remainder of execution. By assuming initial bindings do not

change, the direct dispatch optimizations described in this section eliminate repetitive

lookup and dispatch overhead.

First, consider the Python function call example of Section 4.1.3:

1 def f():
2 g(x)

rendered into Java as:

1 public PyObject f$1(PyFrame frame) {
2 frame.getglobal("g"). call (frame.getglobal("x"));
3 }

Note the lookup step performed by frame.getglobal and the dispatch step by the

call method on the resulting PyFunction object. While the lookup step is effec-

tively bypassed by global caching, the more expensive dispatch is not. In pyparsing,

for example, after applying the optimizations discussed this far, Jython methods

implementing function dispatch consume 73% of runtime (Table 4.1).

A common case subset of function invocation maps directly to Java functionality:

• The called function is either a Java method or a Python function or method

with a finite number of positional arguments.

• No implicit type conversion (e.g., from objects of class java.lang.String to those

of Python’s unicode type) occurs when calling from Python to Java.

46

A direct dispatch optimization replaces the complex and general Jython function

call path with an atomic region specialized for the above cases. The speculative caller

code becomes:

1 begin atomic region();
2 g$g(g$x); // note no call
3 end atomic region();

For Python call targets, replacement callee code is generated, in which the sin-

gle PyFrame parameters are replaced by the Python function’s individual positional

parameters.

Only the caller code needs to be invalidated if debugging or tracing is enabled;

the speculative callee code will then be unreachable. Jython’s existing response upon

nonspeculative function entry to an active debugger or execution tracer is amended to

disable speculative regions within the function during execution, in order to ensure

debugger control or trace events. Dictionary watchers (such as those used in the

global caching optimization) monitor nonspeculative writes to the names’ bindings.

Regions which speculatively write to the corresponding cached globals are disabled

in advance, as simply writing to a Java variable cannot trigger region invalidation.

Similarly, I applied direct dispatch to calls from one method to another of the

same class, and access to an object’s attributes from methods of its class. In addition

to the above assumptions, it is also necessary to verify the method or data attribute

has not been overridden by a subclass or by an individual object instance, or assigned

a custom data descriptor. Consider the following example:

1 class C(object):
2 def f(self):
3 return self.g()
4 def g(self):
5 return 1

Some of the ways in which direct dispatch of C.f can be invalidated include:

1 C.g = lambda self: 5 # assign to class dictionary
2

47

3 c = C()
4 c.g = lambda: 5 # override instance dictionary
5

6 class D(C): # subclass C
7 def g(self):
8 return 5
9

10 class E(object):
11 def g(self):
12 return 5
13 C.f.im func(E()) # bypass class identity check, invoke on instance of other class

I was able to implement all the related assumption checks but the class identity

check with assumption traps without affecting performance on the speculative path.

Python does not permit overriding call on instance method objects.

These direct dispatch optimizations benefited pyparsing considerably more than

pystone, with relatively few function calls, or richards, with a large number of

polymorphic dispatch sites that have no single common case target.

4.2 Atomic region usage

This section includes a characterization of the atomic region usage patterns of explicit

speculative code, as well as a simulation of explicit speculation’s performance with

limited buffer capacity for speculative data (Figure 4.4). pyparsing uses recursion

extensively, such that many of the inner regions are disabled on the basis of their max-

imum footprints, despite their manageable actual footprints at inner nesting levels.

As a result, its performance is significantly affected by smaller buffer capacities.

Figures 4.5, 4.7 and 4.9 plot the maximum observed instruction counts, and Fig-

ures 4.6, 4.8 and 4.10 the maximum speculative data footprint (in 32-byte blocks),

of each potential static atomic region. The maximum nesting depth is the maximum

dynamic depth of regions nested inside a static region (including the region itself).

For example, if a region is always innermost, its maximum nesting depth is 1.

48

S
pe

ed
up

 v
s.

 C
P

yt
ho

n
2.

4.
3

0.125

0.25

0.5

1

2

pyparsing pystone richards

variants
Jython
Explicit speculation (16K)
Explicit speculation (32K)
Explicit speculation (64K)
Explicit speculation (unlimited)

Figure 4.4: Jython speedups (all optimizations applied) over CPython on three
Python benchmarks, with varied buffering capacity for speculative state.

Static region information conveys the range of observed behavior in the bench-

marks, but not its frequency in execution. Figures 4.11, 4.12 and 4.13 thus weight

the regions by their dynamic instruction counts (excluding nested regions).

Most explicit speculative optimizations I implemented did not measurably change

the atomic regions’ speculative data footprint. An exception was the Joni optimiza-

tion to pyparsing, which eliminated string expansion from 2 bytes to 4 bytes per char-

acter. Between Figures 4.13, which plots the memory use of unoptimized pyparsing

and 4.14, which includes the Joni optimization, the footprints of regions which per-

form regular expression matches (those clustered around 128 KB) were nearly halved.

49

Instructions

In
st
ru
ct
io
ns

0

5

10

15

20

25

30

210 215 220 225 230

maximum
nesting depth

765
753
723
503
48
10
9
8
7
6
5
4
3
2
1

Figure 4.5: Instructions in static regions of pystone.

Bytes referenced

In
st
ru
ct
io
ns

0

5

10

15

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

maximum
nesting depth

765
753
723
503
48
10
9
8
7
6
5
4
3
2
1

Figure 4.6: Memory use of static regions in pystone.

50

Instructions

In
st
ru
ct
io
ns

0

5

10

15

20

25

30

210 215 220 225 230

maximum
nesting depth

22
19
17
14
12
10
9
8
7
6
5
4
3
2
1

Figure 4.7: Instructions in static regions of richards.

Bytes referenced

In
st
ru
ct
io
ns

0

5

10

15

20

25

30

256 512 1K 2K 4K 8K 16K 32K 64K

maximum
nesting depth

22
19
17
14
12
10
9
8
7
6
5
4
3
2
1

Figure 4.8: Memory use of static regions in richards.

51

Instructions

In
st
ru
ct
io
ns

0

5

10

15

20

25

30

210 215 220 225 230

maximum
nesting depth

765
753
723
503
48
10
9
8
7
6
5
4
3
2
1

Figure 4.9: Instructions in static regions of pyparsing.

Bytes referenced

In
st
ru
ct
io
ns

0

5

10

15

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

maximum
nesting depth

765
753
723
503
48
10
9
8
7
6
5
4
3
2
1

Figure 4.10: Memory use of static regions in pyparsing.

52

Bytes referenced

In
st
ru
ct
io
ns

0

50000

100000

150000

200000

1K 2K 4K 8K 16K 32K

maximum
nesting depth

9
8
7
6
5
4
3
2
1

Figure 4.11: Memory use versus dynamic instruction count of atomic regions in un-
optimized pystone.

Bytes referenced

In
st
ru
ct
io
ns

0e+00

2e+08

4e+08

6e+08

8e+08

1e+09

256 512 1K 2K 4K 8K 16K 32K 64K

maximum
nesting depth

22
19
17
14
12
10
9
8
7
6
5
4
3
2
1

Figure 4.12: Memory use versus dynamic instruction count of atomic regions in un-
optimized richards.

53

Bytes referenced

In
st
ru
ct
io
ns

0e+00

2e+08

4e+08

6e+08

8e+08

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

maximum
nesting depth

765
753
723
503
48
10
9
8
7
6
5
4
3
2
1

Figure 4.13: Memory use versus dynamic instruction count of atomic regions in un-
optimized pyparsing.

Bytes referenced

In
st
ru
ct
io
ns

0e+00

2e+08

4e+08

6e+08

8e+08

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

maximum
nesting depth

765
753
723
503
48
10
9
8
7
6
5
4
3
2
1

Figure 4.14: Memory use versus dynamic instruction count of atomic regions in
pyparsing with explicit speculation.

54

Chapter 5

Explicit speculation on unmanaged
runtimes

Explicit speculation may be adapted to serve the needs of unmanaged dynamic lan-

guage runtimes. While this involves lower-level, less abstract expressions of atomic

regions and implicit assumptions, the most significant change from managed runtime

explicit speculation is a new type of assumption check—one which directly protects

a region of memory.

I once again work with an implementation of the Python language, the CPython

interpreter, and its dynamic specializer Psyco. Psyco generates native x86 code for

common operations on basic Python types, such as iteration over lists and function

invocation, and uses a more efficient “unboxed” representation of some object types

(e.g., integers, strings, and lists) if the objects live entirely within Psyco generated

code regions. Psyco-specialized code usually runs faster than the equivalent inter-

preted execution, and can be an order of magnitude faster for certain applications,

such as those involving collection operations or string manipulation [35].

To be sure, Psyco’s performance could be improved further by more sophisticated

optimizations, but that is not the focus of this chapter. Instead, I am concerned

with implementing the optimizations in a way that preserves Python’s semantics as

a dynamic language. This is a concern because Psyco does not precisely emulate

the semantics of the Python language. As clearly stated in Psyco’s documentation,

“Psyco makes assumptions that may be wrong (and will cause damage if they turn

out to be)”.

Examples of such assumptions are that class methods are not redefined, that

55

object instances do not have their class changed, global variables are not added

or removed, builtin functions are not modified after module initialization, and no

global variables are defined that override builtins.1 Psyco makes these assumptions

for performance, because explicitly checking them incurs overheads of a magnitude

comparable to the benefit of specialization (as I show in Section 5.5). While many

of the assumptions that Psyco makes hold for most Python programs, they prevent

Psyco from being applied automatically. Instead, programmers have to specifically

invoke Psyco to have their code specialized.

In this respect, Psyco’s implementation serves as an upper bound of the perfor-

mance for the optimizations it applies: a specializer with the same optimizations but

that implements Python semantics perfectly should not outperform Psyco. Thus I

seek to determine how close I can come to Psyco’s performance while eliminating

unchecked assumptions, such that Psyco can be applied automatically to all code in

the presence of supporting hardware.

5.1 Fine-grain memory protection hardware

Recent architecture research has included a number of proposals for fine-grain mem-

ory protection techniques [6, 46, 48] that allow specifying protection granularities

down to a single cache block, a word, or even a single byte, depending on the mecha-

nism. These techniques have been proposed for flexible interprocess sharing (to avoid

copying) [46] and software debugging [48]. Each of these techniques provide an inter-

face for specifying access permissions for an arbitrary region of memory, such as the

following:

void protect(addr t start addr, size t size, access type t atype);

1Another class of assumptions Psyco makes consists of cases in which Psyco trades efficiency
of execution in general for perfect emulation of CPython’s behavior. For example, Psyco does not
provide CPython’s protection from stack overflow or properly handle recursive data structures.

56

Following the standard POSIX signal interface, each technique provides the ability

to register a callback function that will be invoked when a thread touches a protected

memory region. This callback provides the address of the faulting memory access,

along with the type of access attempted and the context of the faulting thread:

void (∗hndlr)(addr t fault addr, access type t atype, void ∗ucontext);

When an assumption has been violated, it will trigger a callback, which should

then invalidate the specialized methods whose assumptions have been violated and re-

move the memory protection region, before returning to the application thread where

the faulting access will be retried and succeed. An assumption registry tracks the

relationship between assumptions, here represented by protected memory addresses,

and the related specialized code.

While all of the above-referenced fine-grain memory protection proposals offer

similar functionality to software, their hardware implementations differ dramatically.

For these experiments, I selected the User Fault-On (UFO) bits system [6] for its low

overhead and hardware simplicity.

The UFO proposal frees up a few of the error checking bits in ECC memory by

encoding ECC at a larger granularity (e.g., 128b vs. 64b), the same technique used

to provide storage for the Alpha 21364’s directory [16]. These bits are used to store

one “fault-on” read and one “fault-on” write permission bit for each block of memory.

When a memory block is brought on-chip, its UFO state accompanies it as part of

the ECC state. In the processor cache, the UFO state is stored with the cache tag; in

a system with 64-byte cache blocks, this represents a 0.4% storage overhead. Writes

to the UFO bits are permitted in User mode, and are treated as writes to the cache

block, forcing the processor to acquire exclusive coherence permission to the block

and ensuring the coherence of the UFO bits. By piggybacking on the existing cache

coherence protocol in this way, UFO avoids the TLB shootdown overhead associated

with standard page protection.

57

Because UFO permissions are stored with the cache blocks they protect, UFO

incurs no overhead when permissions are not violated. When a cache access is per-

formed, the UFO bits are read along with the rest of the tag and compared with the

type of access performed; when a protection-violating instruction attempts to retire,

an exception is raised. Our implementation uses the standard x86 exception model

and the Linux kernel’s signal interface to communicate the faulting access back to

the user thread. This signal invocation incurs significant overhead, but has little

performance impact in practice because it is rarely invoked.

5.2 Psyco and specialization-by-need

Unlike other specializers, which operate on whole functions or program traces, Psyco’s

specializer tightly intersperses code generation with execution at a bytecode level

until it has generated code for all the unique cases it encounters. This process, called

specialization-by-need, allows Psyco to tolerate the lack of type information without

having to collect value and/or path profiles ahead of time.

The process works by incrementally emitting small, specialized native code buffers

linked by branches. Each code buffer uses the state of the execution up to that point

(e.g., the types of the objects that lead to this execution path) to generate code for the

next set of bytecodes. At any point where Psyco cannot generate code because doing

so would require a piece of runtime information, it stops code generation and leaves

a stub, called a respawn code buffer,2 that holds the state of the compilation and

reinvokes Psyco if it gets executed. When a respawn point is reached, Psyco collects

the run-time information it needs to continue code generation, emits a new code

buffer, and continues execution at that code buffer. This process is best illustrated

by an example.

2Psyco creates similar regions known as “code pause” and “changed global”. I use “respawn” as
a generic term in this paper to reference all points at which Psyco restarts its code generator.

58

Attribute lookup is a very common Python operation which takes two Python

objects, an object and an attribute name, and returns the value the object has as-

sociated with that name, or an exception if the attribute isn’t found. In CPython,

like in Jython, its implementation involves a series of hash table lookups and pointer

dereferences; it’s also possible to interpose Python or native code in several places

in the attribute lookup process. As the full flexibility of Python attribute lookup is

seldom used in practice, it is an ideal candidate for specialization.

Psyco specializes attribute lookup for two common cases, but Psyco does not

know while initially generating code which path(s) will be necessary at a given site.

• The attribute’s value is in the instance’s dictionary. Per-instance data

is commonly stored here.

• The attribute’s value is in the dictionary of the instance’s class or a

superclass. Methods are commonly stored here.

Presuming that this is the first access to the object, Psyco looks at the object’s

type when this code is being generated (call it a C), generates a guard that permits

devirtualization of the object in the code downstream, and constructs a respawn point

to handle the case when the guard fails. Then it generates code that checks whether a

per-instance dictionary is available and, if so, retrieves the value from the dictionary

if present. The cases where no dictionary is present or the dictionary lookup fail are

left as respawn points (Figure 5.1a). If later, an instance is encountered that does

not have a dictionary, the respawn point will be used to construct a code buffer that

performs the dictionary lookup in the class’s dictionary (Figure 5.1b). If the attribute

is always found in the instance, the code to look in the class is never generated at all.

59

Instance has dict?

Respawn

no yes

Attribute found
in dict?

Respawn

no yes

Return
attribute

Instance has dict?

Respawn

no

Cached
class

attribute

Return
attribute

no

a) b)

Is of class C?

yes

Respawn

no yes

Figure 5.1: Psyco’s specialization of attribute lookup. (a) If the instance always
contains a dictionary with the requested attribute, no further code is generated. (b)
If, instead, Psyco is reinvoked, it performs attribute lookup in the class, and if the
attribute is present, it replaces the respawn buffer with code that returns a cached
copy of the class attribute’s value. Subsequent executions invoke the cache-returning
branch directly, without involving Psyco’s code generator at all.

5.3 Ensuring correct speculation in Psyco

So far, I have introduced the hardware mechanisms I apply to checking specialization

assumptions and recovering from their violation, and the language and dynamic spe-

cializer to which I apply them. The techniques of fine-grain memory protection and

checkpoint/rollback are orthogonal: they can be used individually, but they comple-

ment one another well. In this section, I explore several case studies: an assumption

that can be checked using fine-grain memory protection alone, then one that exercises

the checkpointing mechanism, and finally discuss how the two mechanisms interact.

5.3.1 Class attribute caching and dictionary watching

The example in Figure 5.1 demonstrates one of Psyco’s unchecked assumptions: once

it caches a class attribute, it never checks if the attribute has changed. This can result

60

foo:

super
A

foo:

goo:

super
B

super
C

class
bar

bar = C()
f = resolve(bar, 'foo')
f(bar)
 methodY
g = resolve(bar, 'goo')
g(bar)

method Y

method Z

bar = C()
bar.foo()
bar.goo()

method X

bar = C()
f = resolve(bar, 'foo')
f(bar)
g = resolve(bar, 'goo')
g(bar)

begin_r (abort:)

xend

memory locations represent
assumptions, monitored via

fine-grain protection mechanisma)

tries to write C
(raises exception)

0

aborts atomic region

transfers control to
non-specialized version

tries to write C.foo

signal handler:
invalidate specialized code
remove memory protection
return

b)

c)

checkpoint &
speculatively
execute…

method X

method Y

bar = C()

begin_r (abort:

end_r

method X

method Y

bar = C()

1 2

3 4

5

6

7
8

raises exception

Figure 5.2: Applying fine-grain memory protection and checkpointing/roll-
back support to optimistic specialization. (a) During specialization, the as-
sumed values’ addresses are write-protected with fine-grain memory protection, (b)
then the specialized code is emitted, wrapped in an atomic region, and a second
non-specialized version of the code is generated to handle any cases when the region
should fail. (c) An example invalidation scenario: a processor state checkpoint is
taken, and the specialized code is speculatively executed (0), until method Y tries to
redefine C.goo. Because C’s dictionary is write protected, an exception is raised (1)
before the method is redefined. This exception causes the atomic region to roll back
to the checkpoint (2), dropping the raised exception. Hardware then transfers control
to the non-specialized version (3), which begins execution (4). Again, an exception
is raised, when method Y tries to write C’s dictionary. (5) This time it succeeds,
invoking the language runtime’s signal handler. The signal handler uses the memory
address of the violation to look up which specialized code fragments need to be fixed
up or invalidated (6), before the fine-grain write protection is turned off. The signal
handler returns (7), at which point the write to C’s dictionary can finally complete.
Execution in the un-specialized code continues (8) and because the standard method
resolution is performed, method W is correctly invoked after method Y.

61

Instance has dict?

Respawn

no

Stale
cached
class

attribute

no

codebufwrite_jmp

DictWatcher

Dictionary:
C.__dict__

Entry:
goo: methodW

Observer:

Figure 5.3: A dictionary watcher in action. The dictionary watcher notifies its
observers when the dictionary’s hash table adds, removes, or changes an entry with
the specified key. In this case, it is watching class C’s dictionary for changes to the
goo key. The observer stores information—in this case, pointers to the address of
a conditional branch instruction and its new target—which it uses to carry out an
invalidation when notified of a change.

in a stale value being returned, or even a crash, if the cached object is deallocated.

To allow this specialization and maintain correct Python semantics, can apply the

technique depicted in Figure 5.2a. We use UFO’s fine-grain memory protection to

watch the class dictionaries for changes. For every specialized code region that makes

assumptions about a given dictionary, I allocate a software data structure that holds

pointers to where the specialized code is linked in and to the respawn point3 that the

specialized code will replace (as shown in Figure 5.3). If the cached attribute later

becomes invalid, these data structures are walked and, at each branch to a now invalid

specialized code buffer, the respawn point is relinked, effectively unspecializing the

code. Once an invalidation occurs, the related dictionary watcher can deregister itself

from UFO, as the assumption no longer needs to be monitored. The next time Psyco

reaches that place in the code, it re-respawns, installs a new dictionary watcher, and

caches the new (correct) attribute. Thus, if a watched value changes multiple times

3As these respawn points are typically deallocated when they are replaced by code buffers, we
have to modify Psyco to not deallocate them.

62

before the related specialized code is reinvoked, it only effects a single invalidation

attempt.

Generally, Psyco makes assumptions about dictionaries relating to a specific key.

There are three logical operations that can potentially invalidate an assumption: an

entry with the key can be added, deleted, or changed. To ease the management of

tracking these events, we implemented a standalone component called a dictionary

watcher. While this dictionary watcher behaves much like an assumption trap in a

managed environment, there is one important distinction. Rather than tracking log-

ical operations on a dictionary like addition, deletion and modification, the watcher

tracks physical modifications to the hash table’s implementation. This has two im-

plications: first, it needs to respond to UFO faults due to physical modifications that

have no logical counterparts (e.g., resizing a dictionary without changing any of its

contents), and second, it needs to discern from the sequence of physical operations

what logical operations are being performed on the dictionary. The first leads to the

potential for unnecessary execution overhead, as the UFO protections will need to be

updated on resizing. The second requires the dictionary watching code to implement

a finite state machine which maps physical events to logical operations.

Because UFO faults are expensive (our current implementation uses the Linux

kernel’s signal mechanism) the viability of this approach relies on them being infre-

quent. This necessitates a low frequency of false positives—events that trigger UFO

faults yet do not lead to invalidations of specialized code. Two potential sources of

false positives must be considered: first, dictionaries that are being watched must be

rarely modified, as the physical actions involved in most dictionary modifications will

trigger UFO events even if for keys other than the ones being watched, and, second,

if the fine-grain protection mechanism has a minimum granularity (64-byte blocks

for our UFO implementation) then values located “nearby” watched items should be

rarely modified. In practice, I have not found false positives to be a problem.

63

5.3.2 Class changing and recovery

The previous section’s attribute changing only required use of our proposed hardware

to watch memory for changes that invalidate Psyco’s assumptions. Existing Psyco

software mechanisms recovered from this invalidation. However, not all of Psyco’s

unchecked assumptions are as simple to recover from. Where necessary, Psyco can

recover with the assistance of our atomic region execution hardware’s checkpoint/roll-

back mechanism.

The primary benefit of adding explicit speculation to Psyco is arbitrary recovery

with low overhead. Our modifications enable Psyco to recover from an invalidation

at any point during execution without incurring additional overheads of code size,

memory use or compiler complexity in reconstructing the circumstances of the inval-

idation.

For example, a Python object’s class is just another of its attributes that can be

assigned to (with a few restrictions). Psyco assumes that, as long as it’s using an ob-

ject in a single code buffer, the object’s class remains constant. If this assumption is

violated, Psyco may for example invoke the wrong class’s methods on the object, typ-

ically yielding incorrect results. Psyco must therefore stop executing specialized code

immediately upon a class change, a task for which a hardware rollback mechanism is

ideally suited.

Unlike with a class attribute change, which invokes the commonly used functions

for Python dictionary access, there exists a location to insert an assumption trap

before the class of an object is changed: CPython’s object set class function. Con-

veniently, this function is not called when an object’s class is set as it is created,

only when it is modified thereafter. I use a write barrier to react to a class change by

wrapping this function with a version that performs an explicit abort if it is executing

within an atomic region.

64

interrupt
conflict

set overflow
system call
exception

Why did atomic
region abort?

Rollback

Un-
specialize

Retry
atomic region

Retry non-
speculatively

Compiler
state

atomic region body
(optimistically

specialized code)

push &compiler_state
begin_r (abort:)

end_r

unspecialized code
(no assumptions)

Figure 5.4: Recovery in Psyco.

An atomic region may abort for a number of reasons, which Psyco can query

in an abort handler—a piece of code at an address to which the hardware jumps

after rolling back to the checkpoint, as shown in Figure 5.4. A few reasons, namely

interrupts and false sharing-induced conflicts, are expected to be transient and don’t

affect correctness, so the atomic region can retry as is. When an atomic region

aborts because its speculative state overflows the processor cache, or a system call,

exception, or explicit abort occurs, the modified Psyco discards all its assumptions

and re-executes the code nonspeculatively along a slow, but correct, path, a process

that closely resembles respawning.

The other “input” to the abort handler, other than the abort reason, is Psyco’s

compiler state (a pointer to which is pushed on the stack before the atomic region

begin). Respawn buffers and similar structures in Psyco provide sufficient context for

its compiler to create a generic, assumption-free version of the aborted region’s code.

In keeping with Psyco’s philosophy of specialization-by-need, this safe version of the

65

code does not need to be generated until it is actually needed following an abort.

Speculative execution resumes when the newly constructed code buffer exits. While

temporarily ignoring all assumptions is over-conservative, it is trivial to implement

in Psyco, requires no additional compiler state be retained beyond that which Psyco

already requires, and is infrequently required.

With appropriate behavior for a region abort established, I placed atomic region

boundaries in Psyco at appropriate locations to avoid degrading performance. Min-

imizing performance impact requires moderate atomic region sizes. As with Jython,

if atomic regions are too small, the overhead associated with beginning and ending

regions may not be negligible. If too large, they will potentially cause aborts due to

cache overflows, and the occasional abort resulting from a stray interrupt will lead to

a significant amount of work being lost.

I place atomic region boundaries in three sets of locations to generate modestly-

sized regions while ensuring that Psyco can provide the “compiler state” necessary

for recovery upon an abort. (Note that Psyco, unlike Jython, does not nest regions.)

The first are function entry points and loop headers in specialized code, which prevent

most forms of repeated execution inside a region that could lead to cache overflow.

The second are entries to, and exits from, the Psyco compiler. (Psyco’s compiler does

not need to be speculatively executed: CPython and Psyco use a cooperative thread-

ing model, and there are no yield points in the Psyco compiler, so Python code can’t

execute and invalidate assumptions during compilation.) The third excludes exter-

nal native function calls in specialized code from atomic regions, by ending a region

before the call and beginning after it returns. Before invoking an external function,

Psyco must relinquish control: the runtime state must be consistent enough that

the existing exception-handling code in the callee can handle all potential conditions.

Excluding external functions also eliminates from atomic execution many circum-

stances in which hardware would be unable to buffer speculative state—for example,

66

file I/O. Following an external call, Psyco includes a respawn point in case the callee

generates an exception. I use the compiler state derived from this respawn point and

its immediately preceding snapshot to revert to safe nonspeculative execution if the

following region aborts.

5.3.3 UFO in atomic regions

There are two kinds of invalidations requiring atomic region rollback: local invalida-

tions, which affect the currently executing code buffer, and global invalidations, which

affect other code. Changing an object’s class is an example of a local invalidation,

because the scope of the class assumption extends only as far as the current code

buffer; Psyco already dispatches based upon an object’s class when entering or reen-

tering other code buffers. Changing a Python builtin such as abs is an example of a

global invalidation, because all code with a reference to the set of builtins or module

globals containing abs is now incorrect.

Because global invalidations should be immediately visible, they cannot execute

within an atomic region. Therefore, an attempt to invoke a UFO handler inside an

atomic region causes the region to abort. When the hardware re-executes nonspecu-

latively, the same protected address is accessed, but this time, we execute the UFO

handler and perform global invalidation. This sequence is depicted in Figure 5.2c.

Where local invalidation is triggered by a memory access, it is implemented by

watching a piece of memory with no handler attached. This still causes the atomic

region to abort and safely retry nonspeculatively. Outside an atomic region, the UFO

hardware intercepts such an access, but software reacts by doing nothing.

67

5.4 Other assumptions

For completeness, I briefly present the methods by which I detect and react to the

invalidation of the other unchecked Psyco assumptions. Some utilize hardware watch-

ers, some involve an atomic region abort, and some do both.

5.4.1 Class attributes with multiple inheritance

The discussion of class attribute caching in Section 5.3.1 omits one piece of the puzzle:

Python supports multiple inheritance. If an attribute isn’t present in an instance’s

class, lookup continues with each of the class’s superclasses in a deterministic sequence

called the method resolution order (MRO). When watching an attribute for changes,

Psyco in fact needs to monitor the attribute dictionary of the class where the attribute

is defined, and the dictionaries of all subclasses in the MRO preceding that class. For

example, if class D’s MRO is (D,C,B,object) and an access to the attribute B.a for an

instance of D is cached, Psyco must watch for the creation of D.a and C.a as well as

for the change or deletion of B.a. Similarly, invalidating D.a also effects caches of a

for the class D and its subclasses which do not define a themselves.

A similar issue could arise with Python’s dynamic super type, used for explicit

references to superclass attributes according to a class’s MRO.

5.4.2 Changing bases

With some constraints, it’s possible to change the bases attribute of a Python

class. bases contains a list of classes from which a class inherits, and the order

of the items in the list influences the class’s method resolution order. There is a

similar function to the class setting one, type set bases, but this time, I insert

an assumption trap as a wrapper function which performs a global invalidation. If

executing within an atomic region, the wrapper function aborts the region explicitly;

68

otherwise, it invalidates all the code buffers which cache attributes for the class and

its subclasses.

5.4.3 Builtins

I modified Psyco to associate each Python builtin with the Psyco-compiled functions

which reference that builtin. Then, I use dictionary watchers to perform a global

invalidation when a builtin is redefined or a same-named global created. Because

most builtins have no “exceptional condition” to test for, with an associated respawn

point, they can’t invalidate in place by swapping a pointer as I do with class attributes.

Instead, I invalidate the entire compiled function and remove the builtin from the list

of Psyco-recognized builtins for the remainder of the execution session.

5.4.4 Changing tp getattro and getattribute

It’s possible not only to redefine a class’s attributes, but override the very pro-

cess of looking up attributes in an instance, by changing the tp getattro “slot” in

a PyTypeObject (from C) or a class’s getattribute attribute (from Python). There

is a location in which to insert an assumption trap for such far-reaching slot changes,

CPython’s update one slot function, but it has several other uses, so it’s easiest to

simply watch the tp getattro slot for changes. On a change, Psyco aborts the current

region as usual, and for each place in the generated code which performs an attribute

lookup on objects this class, I replace the conditional branch to the respawn buffer

(which handles the case in which the attribute isn’t present in the instance) with an

unconditional branch to a new respawn buffer which, when entered, will recognize

the nonstandard tp getattro function and generate code to use the user’s attribute

lookup mechanism. This thereby bypasses both Psyco’s instance and class attribute

lookup specializations.

69

5.4.5 Runaway operations

Psyco does not check for stack overflow in user code, nor does it support comparing

circular data structures without infinitely recursing. A stack overflow in Psyco as

a result of either of these operations causes the runtime to crash. With recovery

enabled, these operations cause a set overflow instead, and the safe version executed

after the atomic region abort does not include the Psyco optimizations which do not

check for adequate stack space.

5.5 Results

I performed an evaluation of these techniques with two intended goals: first, to

demonstrate that these techniques do in fact enable the implementation of precise

Python semantics and, second, to measure the overhead of their introduction. I found

that the overhead was negligible.

To emulate a system where the proposed hardware mechanisms were available,

I implemented the UFO and atomic region execution hardware as extensions to the

x86 version of the Virtutech Simics full-system simulator [24] and the Linux 2.6.15.4

kernel. These experiments were performed on a simulated uniprocessor Intel Pen-

tium 4-based machine.

To verify the functionality of my changes I implemented Python “microbench-

marks” that tested each of the language features discussed in Section 5.4; each of

these demonstrated correct Python semantics. In addition, I identified two larger

Python applications with which to test correctness: an application of the Django

Web framework’s templating system (django) and a Verilog file format parser con-

structed with the pyparsing toolkit (as discussed in the previous chapter). Both

benefit from Psyco’s specialization, but employing Psyco careless results in each ex-

ecuting incorrectly with the unmodified Psyco. In particular, Django changes class

70

pystone richards django pyparsing
1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

S
p

ee
d

u
p

Psyco
Psyco naive
Psyco + UFO
Psyco + UFO + BTM

Figure 5.5: Speedups on a real machine, indicative of a lower bound on overhead for
the Psyco modifications.

attributes, and pyparsing modifies objects’ classes, though neither performs these

operations frequently. Nevertheless, the modified Psyco correctly executes them.

As with Jython, I also collected performance estimates on real machines, since

the UFO and atomic region execution mechanisms should only introduce overhead

when a fault is detected or when a region is aborted. As a result, a real machine

should serve as a good estimate for performance of the modified Psyco when special-

ization assumptions are not violated, the cases that require the proposed hardware

and expose its overhead. Note that these experiments do account for the overhead

of the additional instructions that were introduced to set up dictionary watchers for

UFO as well as start and stop regions, check whether a region is in progress, and

to keep Psyco compiler state on the stack where necessary for recovery. This code

is implemented using normal x86 instruction sequences that are recognized by the

modified version of Simics.

Figure 5.5 presents tests on an Intel Core 2 Duo E6600 (running in 32-bit mode)

with Linux kernel 2.6.9-42.0.8ELsmp. On this system I ran an unmodified CPython

(version 2.4.3) with four different versions of Psyco 1.5.1.4 “Psyco” represents an un-

4The Psyco results in the previous chapter employed CPython 2.6 with Psyco 1.6. The modi-

71

modified Psyco. “Psyco (näıve)” is a version of Psyco where the attribute lookup spe-

cialization has been explicitly disabled, which executes correctly but at a considerable

performance penalty indicative of the benefit of this specialization. “Psyco + UFO”

is a version extended to register dictionary watchers, and “Psyco + UFO + BTM”

is the same further extended to execute specialized code speculatively. Speedups are

shown relative to the CPython interpreter for django and pyparsing, as well as two

standard benchmarks commonly used to measure the speed of Python implementa-

tions: pystone, computationally intensive procedural code, and richards, which is

heavily object-oriented.

Only pystone, which shows little object orientation, sees a modest impact from

disabling the attribute specialization; in all of the other applications it nearly wipes

out Psyco’s benefits. In contrast, registering dictionary watchers (“Psyco + UFO”)

adds negligible overhead, as this occurs rather infrequently (only during code gener-

ation). Actually, the “Psyco + UFO” case slightly outperforms unmodified Psyco;

while this result was repeatable, I believe it to be a second-order effect resulting from

a different memory layout, not actual differences in execution. The “Psyco + UFO

+ BTM” case incurred a slight slowdown with respect to the unmodified Psyco, but

in the worst case this was only 2%.

While the functional simulator does not provide real performance numbers it can

provide dynamic instruction counts, which further support the assertion that the

benefit of the proposed hardware support can be exploited with little impact on the

code’s performance. In all but one case, the instruction count overhead with UFO

and BTM-enabled assumption checking is negligible (shown in Figure 5.6). pystone

is the benchmark with the highest proportion of Psyco-generated code to total code

executed, which magnifies the region setup overhead.

fications discussed in this chapter were performed on the then-current versions of CPython and of
Psyco.

72

pystone richards django pyparsing
1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

S
p

ee
d

u
p

Psyco
Psyco naive
Psyco + UFO
Psyco + UFO + BTM

Figure 5.6: Instruction count-based “speedups” relative to interpreted CPython ex-
ecution on a simulated system.

Finally, Table 5.1 presents a characterization of atomic region behavior for two

benchmarks, in particular identifying aborted regions by their reason for aborting.

Most aborts in simulation occurred due to atomic regions that were interrupted by

INTERRUPTs; even at 0.1% these abort rates are pessimistically high because Simics

has an unrealistically high interrupt rate to enable interactive use. The small number

of SET OVERFLOW aborts indicate that these heuristics successfully pick well-sized

regions. That a small proportion of Psyco instructions leads to an approximately

30% speedup indicates that Psyco is effective at specializing where it can, but its

coverage of Python operations is incomplete.

73

django pystone

Regions
Total 1398 2512
Committed 1394 2509
EXCEPTION 0 0
INTERRUPT 1 3
SYSCALL 1 0
SET OVERFLOW 2 0
EXPLICIT ABORT 0 0

Instructions
Total 2407753 1147561
Transactional 103930 70015
Committed 99524 70005

Table 5.1: Atomic region behavior.

74

Chapter 6

Conclusion

Explicit software speculation is a practical approach to improving the performance of

dynamic languages whose common case semantics directly map to the capabilities of

an existing managed runtime. With the first hardware supporting atomic region exe-

cution soon to be generally available, explicit speculation should not only deliver real

performance benefits for widely used dynamic language code on managed runtimes,

but the ability to test outside of a simulated environment will facilitate the further

development of managed runtime and hardware support to make explicit speculation

more effective and simpler to employ.

The set of optimizations possible with explicit speculation largely mirror those

available by traditional software-only means. Only the mechanism of implementa-

tion differs. Explicit speculation gives a dynamic language implementer the ability

to express speculative optimizations at a high level, without full knowledge of run-

time behavior, yet maintain correctness and experience minimal runtime performance

penalty for misspeculation in long-running applications. Its approach to optimization

is simply “write efficient code for the common case, then codify the assumptions that

make it correct.” Explicit speculation constructs, such as assumptions and specula-

tive atomic regions, are simple to reason about for the programmer and map cleanly

to existing managed runtime facilities.

With correctly specified assumptions, explicit speculation can turn an incomplete

static analysis or approximate runtime measurement into an effective speculative

optimization with little effort. In implementing several optimizations for Python, I

75

showed that common case behavior of dynamic constructs can be simply established

at compile time or via partial evaluation at load time. Both techniques require

minimal infrastructure when compared with a profile feedback system.

While I have discussed in depth the tradeoffs involved in developing optimizations

with explicit speculation, two concerns dominate in practice. First, can speculative

state’s scope be easily bounded and contained within an atomic region? At worst,

global speculative state may need to be maintained by otherwise nonspeculative code

(with an attendant slowdown). In this case, explicit speculation may offer no ad-

ditional benefit over software-only approaches than elimination of synchronization

overhead (e.g. in global caching, Section 4.1.3). Second, does an optimization’s scope

fit within the hardware’s ability to buffer its speculative state? Certain control flow

constructs such as recursion, as well as references to large amounts of data, can de-

feat a simple region selection algorithm. Mating explicit speculation to existing, more

sophisticated techiques for region selection (developed for compiler-based speculative

atomic regions [28]) should resolve many practical instances of this issue.

Selecting speculative optimizations with these considerations in mind delivers a

fast implementation cycle from performance problem to solution. This encourages

the use of explicit speculation to attack hot spots in individual applications (e.g.,

regular expression evaluation as discussed in Section 4.1.5) as well as in dynamic

language implementations as a whole. My experience suggests that the interfaces

for explicit speculation and assumption verification I developed will be applicable in

areas beyond dynamic language implementation.

In the following section, I place explicit speculation in the context of its alter-

natives for dynamic language implementation. In Section 6.2, I then suggest future

hardware and software developments with the potential to broaden explicit specula-

tion’s applicability.

76

6.1 Explicit speculation for dynamic languages

Explicit speculation is simpler to implement than existing alternatives for improving

dynamic language performance.

• One potential alternative is to extend a managed runtime’s semantics to ac-

commodate those of an additional language (e.g., MagLev [14]). Repeating

this process—extending a runtime’s semantics to accommodate those of sev-

eral additional languages—would require many systemic changes and result in

a complex, unwieldy system.

• Building a language-specific runtime generating native code (e.g., V8 [5]) is the

only approach that has been reliably shown to work, but involves a nearly top-

to-bottom reimplementation effort, requiring resources not available in many

dynamic language communities.

• Static analysis-based approaches for dynamic language code either have ex-

tremely limited applicability (e.g., ShedSkin [12]), or require a large imple-

mentation effort yet often require source code be modified for compatibility,

through annotations or the use of dynamic language subsets or variants (e.g.,

RPython [4], JSCompiler [41]).

• Parallel dynamic optimization systems constructed atop a managed runtime

have been somewhat successful (e.g., JRuby [30]), but are limited—in perfor-

mance, correctness, or both—by the cost of supporting recovery at a high level.

Such systems perform a limited amount of profile-guided speculative code gen-

eration without the managed runtime’s explicit knowledge. They must embed

into the speculative code functionality necessary to support potential future

recovery from misspeculation.

77

In this last case, the intermixing of speculative code with “bread crumbs” to

support later recovery leaves the resulting code less idiomatic, thus less predictably

optimizable by the managed runtime [29]. Faced with inconsistent performance, the

implementer then typically tunes aspects of the generated managed code to cater to

a single managed runtime implementation. Modifications to the dynamic language

code, upgrading or switching managed runtime implementations may then still re-

sult in seemingly counterintuitive performance characteristics. By comparison, in

primarily eliminating recovery support from speculative execution (save for explicit

assumption checks and transition code), explicit speculative code is easier for the

managed runtime to optimize and exhibits more predictable behavior.

6.2 Future directions

Explicit speculation’s needs map quite well to the capabilities of near-future atomic

region execution hardware, making particular use of the ability to examine the reason

a region aborted. Aside from incremental improvements in speculative state buffering

capacity and fine-grain memory protection to extend explicit speculation to unman-

aged code, hardware additions likely to benefit explicit speculation would expose the

ability to perform nonspeculative memory accesses inside an otherwise-atomic region.

Nonspeculative reads inside an atomic region would permit access to shared, guar-

anteed read-only data, such as reference tables, reducing the footprint of a speculative

region. Nonspeculative writes could be used by inline assumption checking code to

export information regarding an inline assumption violation, eliminating redundant

checks in recovery code. Both reads and writes could reference speculative state

whose lifetime is guaranteed not to extend beyond an atomic region.

To implement region regeneration—that is, generation of a speculative replace-

ment region to replace an existing atomic region—an explicit speculation runtime

78

must support the ability to exchange code implementations. Psyco already includes

such a mechanism which I exploited; bytecode instrumentation provided as part of

Java’s debugging and profiling interfaces offers a partial solution (methods can be

modified but not added [43]). In future, explicit speculation could take advantage

of the facilities of the the Da Vinci Machine (MLVM) project for Java [39]. MLVM

provides a method handle primitive and customizable dispatch via the invokedynamic

mechanism, such that one or more alternative, compatible implementations and a

fallback bootstrap implementation may be swapped into any call site. Call sites’

bindings to method handles may be invalidated individually or in bulk. The MLVM

functionality maps well to the needs of assumption invalidation; however, it would

require that replaceable speculative regions be enclosed within their own methods.

In order to facilitate more sophisticated atomic region selection methods, the abil-

ity to generate transition code and evaluate assumptions could be partially delegated

to the managed runtime, by providing standard interfaces for inline assumption ex-

pression and conversion between speculative and nonspeculative versions of objects.

With this information, the managed runtime could adjust region boundaries by mov-

ing or duplicating the necessary transition and assumption enforcement code. Re-

gions could thus be split as well as aggregated in order to adapt to the hardware’s

capabilities.

79

References

[1] PyPy microbenchmark suite. URL http://codespeak.net/pypy/dist/pypy/

translator/microbench/.

[2] Pystone benchmark. URL http://svn.python.org/projects/python/trunk/

Lib/test/pystone.py.

[3] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Un-
bounded Transactional Memory. In Proceedings of the Eleventh IEEE Symposium
on High-Performance Computer Architecture, Feb. 2005.

[4] D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. RPython: a step towards
reconciling dynamically and statically typed OO languages. Proceedings of the
2007 symposium on Dynamic languages, pages 53–64, 2007.

[5] L. Bak et al. V8 JavaScript Engine. URL http://code.google.com/p/v8/.

[6] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware memory protec-
tion to build a high-performance, strongly-atomic hybrid transactional mem-
ory. ISCA’08. 35th International Symposium on Computer Architecture, pages
115–126, 2008.

[7] C. Consel and F. Noël. A general approach for run-time specialization and
its application to C. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 145–156,
1996.

[8] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum.
Hybrid transactional memory. SIGOPS Oper. Syst. Rev., 40(5):336–346, 2006.
ISSN 0163-5980.

[9] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard, M. Moir,
K. Moore, and D. Nussbaum. The Adaptive Transactional Memory Test Plat-
form: A tool for experimenting with transactional code for Rock. In Proceedings
of the the third annual ACM SIGPLAN Workshop on Transactional Computing,
2008.

80

http://codespeak.net/pypy/dist/pypy/translator/microbench/
http://codespeak.net/pypy/dist/pypy/translator/microbench/
http://svn.python.org/projects/python/trunk/Lib/test/pystone.py
http://svn.python.org/projects/python/trunk/Lib/test/pystone.py
http://code.google.com/p/v8/

[10] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard, M. Moir,
K. Moore, and D. Nussbaum. Applications of the Adaptive Transactional Mem-
ory Test Platform. In Proceedings of the the third annual ACM SIGPLAN Work-
shop on Transactional Computing, 2008.

[11] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial
hardware transactional memory implementation. Technical report TR-2009-180,
Sun Microsystems Laboratories, 2009.

[12] M. Dufour. Shed Skin: an experimental (restricted) Python-to-C++ compiler.
URL http://code.google.com/p/shedskin/.

[13] A. Gal, M. Bebenita, and M. Franz. One method at a time is quite a waste
of time. In Proceedings of the Second ECOOP Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems
(ICOOOLPS 2007), pages 11–16, July 2007.

[14] GemStone Systems. MagLev: a fast, stable, Ruby implementation with inte-
grated object persistence and distributed shared cache. URL http://maglev.

gemstone.com/.

[15] B. Goetz. Optimistic thread concurrency: Breaking the scale barrier. Tech-
nical report, Azul Systems, Inc., 2006. URL http://www.azulsystems.com/

products/whitepaper/wp_otc.pdf.

[16] L. Gwennap. Alpha 21364 to ease memory bottleneck. MICROREPORT, Oct.
1998.

[17] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support
for Lock-Free Data Structures. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 289–300, May 1993.

[18] U. Hölzle. Adaptive optimization for Self: reconciling high performance with
exploratory programming. PhD thesis, Stanford University, Department of Com-
puter Science, 1994.

[19] J. Hugunin et al. IronPython: a fast Python implementation for .NET and
Mono. URL http://www.codeplex.com/IronPython.

[20] K. Kosako. Oniguruma. URL http://www.geocities.jp/kosako3/

oniguruma/.

[21] A. Kuchling. Beautiful Code, chapter 18, Python’s Dictionary Implementation:
Being All Things to All People. O’Reilly, 2007.

[22] D. Lea et al. JSR 166: Concurrency Utilities. URL http://jcp.org/en/jsr/

detail?id=166.

81

http://code.google.com/p/shedskin/
http://maglev.gemstone.com/
http://maglev.gemstone.com/
http://www.azulsystems.com/products/whitepaper/wp_otc.pdf
http://www.azulsystems.com/products/whitepaper/wp_otc.pdf
http://www.codeplex.com/IronPython
http://www.geocities.jp/kosako3/oniguruma/
http://www.geocities.jp/kosako3/oniguruma/
http://jcp.org/en/jsr/detail?id=166
http://jcp.org/en/jsr/detail?id=166

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 190–
200, 2005.

[24] P. S. Magnussen et al. Simics: A full system simulation platform. IEEE COM-
PUTER, 35(2):50–58, February 2002.

[25] P. McGuire. Pyparsing: a general parsing module for Python. URL http:

//pyparsing.wikispaces.com/.

[26] M. Mielczynski. Joni. URL http://svn.codehaus.org/jruby/joni/.

[27] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:
Log-based Transactional Memory. In Proceedings of the Twelfth IEEE Sympo-
sium on High-Performance Computer Architecture, Feb. 2006.

[28] N. Neelakantam, C. Zilles, R. Rajwar, S. Srinivas, and U. Srinivasan. Hardware
Atomicity: An Effective Abstraction for Reliable Software Speculation. IEEE
Micro, pages 21–31, 2008.

[29] C. Nutter. Exploring JRuby performance on HotSpot?, April 2009.
URL http://permalink.gmane.org/gmane.comp.java.openjdk.hotspot.

compiler.devel/1052.

[30] C. Nutter et al. JRuby: a Java powered Ruby implementation. URL http:

//jruby.codehaus.org/.

[31] E. Phoenix et al. Rubinius: The Ruby virtual machine. URL http://rubini.

us/.

[32] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly con-
current multithreaded execution. In Proceedings of the 34th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2001.

[33] R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of Lock-
Based Programs. In Proceedings of the Tenth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Oct.
2002.

[34] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Pro-
ceedings of the 32nd Annual International Symposium on Computer Architecture,
June 2005.

[35] A. Rigo. Representation-based just-in-time specialization and the Psyco proto-
type for Python. In PEPM’04, August 2004.

82

http://pyparsing.wikispaces.com/
http://pyparsing.wikispaces.com/
http://svn.codehaus.org/jruby/joni/
http://permalink.gmane.org/gmane.comp.java.openjdk.hotspot.compiler.devel/1052
http://permalink.gmane.org/gmane.comp.java.openjdk.hotspot.compiler.devel/1052
http://jruby.codehaus.org/
http://jruby.codehaus.org/
http://rubini.us/
http://rubini.us/

[36] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine construction. In
OOPSLA Dynamic Languages Symposium, Portland, Oregon, October 2006.

[37] N. Riley and C. Zilles. Hardware transactional memory support for lightweight
dynamic language evolution. In OOPSLA Dynamic Languages Symposium, Port-
land, Oregon, October 2006.

[38] N. Riley and C. Zilles. Transactional runtime extensions for dynamic language
performance. In EPHAM 2008: Workshop on Exploiting Parallelism with Trans-
actional Memory and Other Hardware Assisted Methods, April 2008.

[39] J. Rose et al. JSR 292: Supporting Dynamically Typed Languages on the Java™
Platform. URL http://jcp.org/en/jsr/detail?id=292.

[40] A. Shankar, S. S. Sastry, R. Bod́ık, and J. E. Smith. Runtime specialization with
optimistic heap analysis. SIGPLAN Not., 40(10):327–343, 2005.

[41] J. Spolsky, J. Atwood, and S. Yegge. The StackOverflow Podcast, episode 50.
URL https://stackoverflow.fogbugz.com/default.asp?W29043.

[42] L. Su and M. Lipasti. Speculative optimization using hardware-monitored
guarded regions for Java virtual machines. In Proceedings of the Third Inter-
national ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environ-
ments, June 2007.

[43] Sun Microsystems. Java Virtual Machine Tool Interface (JVM TI). URL http:

//java.sun.com/javase/6/docs/technotes/guides/jvmti/.

[44] H. Sutter and J. Larus. Software and the Concurrency Revolution. ACM Queue,
3(7):54–62, Sept. 2005.

[45] G. van Rossum et al. Python reference manual: Naming and binding. URL
http://docs.python.org/ref/naming.html.

[46] E. Witchel et al. Mondrian memory protection. In Proceedings of ASPLOS-X,
Oct 2002.

[47] M. Wolczko. Benchmarking Java with Richards and DeltaBlue. URL http:

//research.sun.com/people/mario/java_benchmarking/.

[48] P. Zhou et al. iWatcher: Efficient architectural support for software debugging.
In Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct. 1994.

[49] C. Zilles. Accordion arrays: Selective compression of Unicode arrays in Java.
International Symposium on Memory Management, 2007.

83

http://jcp.org/en/jsr/detail?id=292
https://stackoverflow.fogbugz.com/default.asp?W29043
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/
http://docs.python.org/ref/naming.html
http://research.sun.com/people/mario/java_benchmarking/
http://research.sun.com/people/mario/java_benchmarking/

Author’s Biography

Nicholas Riley was born on March 26, 1979, in Des Moines, Iowa. After gradu-

ating from Buckingham Browne and Nichols School in Cambridge, Massachusetts,

he attended Brandeis University, from which he earned a Bachelor of Arts degree

with Honors in Computer Science and Biology in 1999. The same year, he entered

the Medical Scholars (M.D./Ph.D.) Program at the University of Illinois at Urbana-

Champaign. In 2009, he completed his Ph.D. in Computer Science under the direction

of his advisor, Craig Zilles.

84

	Chapter 1 Introduction
	An example
	Overview
	Summary

	Chapter 2 Background
	Hardware atomic region execution
	Speculation and specialization
	Dynamic languages and managed runtimes

	Chapter 3 Explicit speculation
	Atomic regions and runtime interaction
	Implementing speculative optimizations
	Characterizing the common case
	Writing speculative code
	Managing speculative data
	Exceptions and control flow
	Assumption checks

	Chapter 4 Explicit speculation on managed runtimes
	Speculative optimizations in Jython
	Experimental method
	Dictionary (HashMap) synchronization
	Global caching
	Eliminating exception metadata
	Joni
	Direct local variable access (unframe_locals)
	Direct dispatch

	Atomic region usage

	Chapter 5 Explicit speculation on unmanaged runtimes
	Fine-grain memory protection hardware
	Psyco and specialization-by-need
	Ensuring correct speculation in Psyco
	Class attribute caching and dictionary watching
	Class changing and recovery
	UFO in atomic regions

	Other assumptions
	Class attributes with multiple inheritance
	Changing __bases__
	Builtins
	Changing tp_getattro and __getattribute__
	Runaway operations

	Results

	Chapter 6 Conclusion
	Explicit speculation for dynamic languages
	Future directions

	References
	Author's Biography

