
Ben Liblit, Alex Aiken, Alice Zheng, Michael Jordan
University of California, Berkeley

Nicholas Riley
Pablo group meeting

23 April 2003

Bug Isolation via Remote 
Program Sampling



• Applications have bugs

• Testing resources limited

• Existing prerelease testing flawed

• Once released, automated testing limited

• No information gathered from successful 
executions

The problem



• Small test group

• Application released to general public

• Many more users than developers, QA, 
technical support representatives

• Most feedback one-on-one

• Most users connected to Internet

User feedback today



• Code coverage

• Users affected

• Context

• Scale (especially in interactive applications)

• Knowledge in test group

Prerelease testing:
not representative



• One-on-one feedback

• Community feedback

• Automated feedback

Feedback routes



One-on-one feedback

Software
User Crash, misbehavior

phone
fax

email
Web

Technical 
Support

Problem description
System information
Suggested resolution

Quality 
Assurance

Engineering
Writing

Internal 
systems

Software
Discussion

Workarounds
FAQ/tech notes
Documentation



Community feedback

User

Technical 
Support

Quality 
Assurance

Engineering
Writing

Mailing lists, news, forums, Wikis Real-time chat Public bug database

User User…



Automated feedback

Software
User Crash, misbehavior

Problem description
Screenshots
User data

Technical 
Support

Quality 
Assurance

Engineering
Writing

Internal 
systems

System information
Program state
Debug logging

Feedback 
agent

Largely manual 
aggregation and 

analaysis



• Application crashes when I do X

• Application misbehaves when I do X

• I want feature X

• How do I do X with the application?

• It’s too difficult/confusing/takes too long to 
do X

Feedback provided



• Application crashes/misbehaves when I do X

• What was the application’s state at the 
time X happened?

• What events led to X?

• Is X reproducible?

• Does X depend on details of the user’s 
system configuration?

• How many users experience X?

Feedback desired



• I want feature X

• How many users want X?

• How do I do X with the application?

• Where did user interface/documentation fail?

• It’s too difficult/confusing/takes too long to do X

• Not addressed

Feedback desired



• Extend automated feedback collection

• Obtain more information using sampling

• Gather information always, not just for 
failures

• Analyze data automatically

Proposed approach



1. Runtime evaluation of assertions

2. Identification of causes separating normal 
from abnormal execution behavior

3. Automatic isolation of nondeterministic 
bugs

What we want



• Slower program execution

• Excessive network usage

• Other scaling problems

• Too much information

• Excessive manual triage

• Privacy violations or security issues

What we don’t want



Problems of scale

• Microsoft had accumulated 1 billion crash 
reports as of a few weeks ago

• Bugs in Mozilla’s browser component as of 
April 23, 2003:

Untriaged 3749

Unresolved 12664

Assigned 4591

Total 141148



• Randomized sampling

• Precompute interval until next sample, 
countdown cached in local variable

• Propagate instrumentation ‘weight’ in CFG

Gives minimum safe interval per region

• Perform interprocedural analysis to 
determine weightless functions

Sampling



• CCured generates many 
assertions, each with 
minimal overhead

• Measurements with 
varying density of 
instrumentation (Table 2, 
reproduced at right)

• Static selection reduces 
overhead to <5% in 94% 
of cases, worst-case 12%

Sampling overhead
benchmark always 10–2 10–3 10–4 10–6

bh 2.81 1.31 1.10 1.07 1.07

bisort 1.08 1.07 1.05 1.05 1.04

em3d 2.14 1.12 1.04 1.02 1.04

health 1.02 1.03 1.02 1.02 1.02

mst 1.25 1.06 1.04 1.03 1.04

perimeter 1.08 1.19 1.13 1.13 1.12

power 1.36 1.07 1.05 1.04 1.04

treeadd 1.13 1.09 1.09 1.09 1.11

tsp 1.05 1.17 1.16 1.15 1.14

compress 2.01 1.21 1.14 1.14 1.14

go 1.17 1.46 1.26 1.22 1.22

ijpeg 2.46 1.17 1.05 1.04 1.03

li 1.58 1.24 1.18 1.16 1.16



• With 10–3 sampling, 10–2 frequency of 
anomaly, for 90% confidence, we need:

• For useful metrics, need at least thousands 
of executions per day

Sampling effectiveness

log (1− 0.90)
/
log

(
1− 1

100×1000

)
= 230,258 runs



Bug isolation
• Known bug and presentation in ccrypt

• Random execution, failure determination

• Sample sign of function return values to 
isolate error results

• Generate one predicate per counter

• Eliminate predicates with various strategies

• Successfully identifies bug and its cause



Predicate elimination

Strategy Discarded 
counters

Remaining 
predicates

1. Universal falsehood 1569 141

2. Lack of failing coverage 1578 132

3. Lack of failing example 1665 45

4. Successful counterexample 139 1571

1 + 4 or 3 + 4 ~1968 2



Nondeterminism

• Can’t eliminate by Æsuccessful counterexampleæ.

• Focus on pointer/memory errors in bc

• For each scalar update, compare new value 
with in-scope same-typed variables

• Count <, =, >: separate features in model

• Train predictions of success or failure based on 
features



• S-shaped function

• Dependent variable is “dummy” (0, 1)

• Irrelevant variables can affect model quality

Binary logistic 
regression

0

1

Logit Model



• Maximize log likelihood of training set

• Want to ignore most input features

• Penalize log likelihood by regularization 
term λ to reduce number of nonzero β 
coefficients

Regularization



• Training

• Cross-validation (λ = 0.3)

• Testing

Data analysis

Strategy Eliminated
features

Remaining 
features

1. Universal falsehood 27242 2908

3. Lack of failing example 642 1571



• Deterministic bug isolation

• Hard to optimize instrumented returns

• Unconditional instrumentation is OK

• Nondeterministic isolation (Figure 4)

• Unconditional instrumentation: 13%

• 10–3 as in experiment: 0.5% overhead

Performance



• User control

• Anonymity

• Statistical methods

• Accidental data collection

• Spamming

• Trust

Security and privacy



• Evaluation of arbitrary predicates by 
statistical sampling

• Lower-overhead dynamic instrumentation

• Isolation of instrumentation or 
performance problems

Other applications



• Generalization of bug isolation?

• Use existing techniques to detect 
memory errors

• Algorithms need to be amenable to 
working with partial (sampled) 
information

• Scaling never addressed?

Questions



Questions?


